Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"

"पुराने को छोड़ नये के तरफ"
Jawaharlal Nehru
"Step Out From the Old to the New"

Indian Standard

ACRYLIC BASED POLYMER WATERPROOFING MATERIALS — METHODS OF TEST

PART 5 DETERMINATION OF MINIMUM FILM FORMING TEMPERATURE AND WHITE POINT

UDC 691.175-744-32-699·82-536·5

© BIS 1992

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

July 1992
FOREWORD

This Indian Standard (Part 5) was adopted by the Bureau of Indian Standards, after the draft finalized by Waterproofing and Damp-proofing Sectional Committee had been approved by Civil Engineering Division Council.

Acrylic based polymers are now extensively used in the country for waterproofing and damp-proofing purposes necessitating the need of formulating a specification on the product. For evaluating the quality and performance characteristics of the product, standardized test methods are necessary to guide manufacture and users of the product.

Methods of tests for acrylic based polymer waterproofing materials have been covered in following parts:

- Part 1 Determination of solid content
- Part 2 Determination of coarse particles
- Part 3 Determination of capillary water take-up
- Part 4 Determination of pH value
- Part 5 Determination of minimum film forming temperature and white point
- Part 6 Alkali resistant test

While formulating the above standards the Committee has taken into consideration the facilities available in the country and the practice prevailing in other countries.

In the formulation of this standards, assistance has been derived from the following publication:


In reporting the results of a test or analysis made in accordance with the final value, observed or calculated is to be rounded off, it shall be done in accordance with IS 2:1960 ‘Rules for rounding off numerical values (revised)’. 
ACRYLIC BASED POLYMER WATERPROOFING MATERIALS — METHODS OF TEST

PART 5 DETERMINATION OF MINIMUM FILM FORMING TEMPERATURE AND WHITE POINT

1 SCOPE
1.1 This standard describes the method for the determination of the white point temperature of aqueous dispersion of acrylic based polymer waterproofing material and the minimum film forming temperature.

2 TERMINOLOGY
2.1 For the purpose of this standard following definitions shall apply.
2.2 Minimum Film Forming Temperature (MFT)
The limiting temperature above which a continuous homogeneous film without cracks is formed.
2.3 White Point Temperature (WP)
The limiting temperature below which an opaque mass and above which a transparent film is formed.

3 PRINCIPLE
The principle of the method is to spread out one or more films of the dispersion on a metal plate (aluminium, stainless steel or copper) either level and smooth or channelled from one side having higher temperature to other side having lower temperature to form a suitable temperature gradient. Subsequently it is dried with a current of moisture free air and determination of the temperature at which the transparent section of the dispersion meets the white section.

4 APPARATUS
4.1 Coating Bench
4.1.1 Test apparatus (see Fig. 1) consisting essentially of a rectangular plate, of aluminium, stainless steel or copper, whose surface may either be perfectly level and polished, or may contain channel 0.3 mm deep and 20 mm wide.

4.2 Devices for Temperature Measurement
For temperature measurements mercury thermometer, resistance thermometer or thermocouples, semi-conductor probes are used to measure the temperature at the surface of the sheet. The range of temperature measured is -10°C to +15°C with an accuracy of 0.1°C.

4.3 Film Spreader
The film spreader shall be made of stainless steel, capable of producing simultaneously and successively either films in the channels or films about 0.1 mm thick and 20 to 25 mm wide as plates without channel.

5 PROCEDURE
5.1 Setting the Temperature Gradient
5.1.1 The devices for temperature measurement shall be put in place.
FIG. 1 DIAGRAM OF TEST APPARATUS GIVEN AS AN EXAMPLE

(THE PLATE IN THIS DIAGRAM IS CHANNELLED BUT THIS FEATURE IS NOT ESSENTIAL)
5.1.2 The heat source and the cooling medium shall be regulated to ensure the correct temperature gradient in polymer dispersion to be tested. The temperature should drop by 20° to 40° C and remain constant during the test. The temperature range shall be adjusted so that MFT occurs roughly in the centre.

5.1.3 The temperature gradient shall be linear, that is, if equal distances are taken, the pressure drop over each should also be equal.

5.2 Determination of MFT and WP

5.2.1 When using a level plate, the dispersion shall be spread out with the film spreader starting from the end with the highest temperature. The dry coat thickness shall be 0.10 to 0.15 mm and the width of the coat shall be 20 mm.

5.2.2 In the case of the channelled plate, poured into the channel, at the end of the plate with the highest temperature and shall be spread out using the film spreader.

5.2.3 Afterwards, the sheet of metal is covered by the glass plate, and the polymer dispersion is allowed to dry either by allowing a current of dried air to flow slowly over the sheet at a constant rate from cold to heated one or by placing silica gel with a moisture indicator in the air space above the polymer dispersion.

5.2.4 After the dispersion has dried, the temperature shall be measured at that point on the bench at which boundary of the white layer has formed or at which a cohesive film just commences to form.

5.2.5 After complete separation of the section transformed into the film (transparent) and untransformed section (white) is visible, distance between the first point of temperature measurement and the line of separation shall be measured.

5.2.6 The temperature indicated by various devices shall be noted and a graph using distance intervals between devices as the abscissa and the plate temperature as the ordinate shall be plotted.

NOTE — If the temperature gradient is linear the curve obtained is straight line and in practice it is then unnecessary to plot a graph.

5.2.7 Using the graph, the white point, temperature shall be determined. If a surface thermometer is used the white point temperature may be determined directly.

5.2.8 The lowest temperature where a continuous homogenous film without groups is formed shall be determined to the nearest degree celsius. This is the minimum film forming temperature.

6 REPORTING OF THE RESULT

The test report shall give the following informations:

a) The identification characteristics of the dispersion tested,
b) The type of testing apparatus,
c) The value of white point temperature in degree celsius, and
d) The minimum film forming temperature in degree celsius.

![FIG. 2 EXAMPLE OF A FILM SPREADER FOR A CHANNELLED PLATE](image-url)
The use of the Standard Mark is governed by the provisions of the *Bureau of Indian Standards Act, 1986* and the Rules and Regulations made thereunder. The Standard Mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well-defined system of inspection, testing, and quality control which is devised and supervised by BIS and operated by the producer. Standard marked products are also continuously checked by BIS for conformity to that standard as a further safeguard. Details of conditions under which a licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
Bureau of Indian Standard

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designation. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Revision of Indian Standards

Indian Standards are reviewed periodically and revised, when necessary and amendments, if any, are issued from time to time. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition. Comments on this Indian Standard may be sent to BIS giving the following reference:

Doc: No. CED 41 (5029)

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 331 01 31, 331 13 75

Regional Offices:
Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110002
Eastern: 1/14 C. I. T. Scheme VII M, V. I. P. Road, Maniktola
CALCUTTA 700054
Northern: SCO 445-446, Sector 35-C, CHANDIGARH 160036
Southern: C. I. T. Campus, IV Cross Road, MADRAS 600113
Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
BOMBAY 400093
Branches: AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, PATNA, THIRUVANANTHAPURAM.

Printed at Printwell Printers, Aligarh, India