[image: Cover]

 Forth Dimension Volume 12 Number 4

 	
 Forth Dimension Volume 12 Number 4

 Pages

 	
 0

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 6

 	
 7

 	
 8

 	
 9

 	
 10

 	
 11

 	
 12

 	
 13

 	
 14

 	
 15

 	
 16

 	
 17

 	
 18

 	
 19

 	
 20

 	
 21

 	
 22

 	
 23

 	
 24

 	
 25

 	
 26

 	
 27

 	
 28

 	
 29

 	
 30

 	
 31

 	
 32

 	
 33

 	
 34

 	
 35

 	
 36

 	
 37

 	
 38

 	
 39

 	
 40

 	
 41

 	
 42

 	
 43

 	
 44

 	
 45

 	
 46

 	
 47

 Forth Dimension Volume 12 Number 4
This book was produced in EPUB format by the Internet Archive.
 The book pages were scanned and converted to EPUB format automatically. This process relies on optical character recognition, and is somewhat susceptible to errors. The book may not offer the correct reading sequence, and there may be weird characters, non-words, and incorrect guesses at structure. Some page numbers and headers or footers may remain from the scanned page. The process which identifies images might have found stray marks on the page which are not actually images from the book. The hidden page numbering which may be available to your ereader corresponds to the numbered pages in the print edition, but is not an exact match; page numbers will increment at the same rate as the corresponding print edition, but we may have started numbering before the print book's visible page numbers. The Internet Archive is working to improve the scanning process and resulting books, but in the meantime, we hope that this book will be useful to you.
 The Internet Archive was founded in 1996 to build an Internet library and to promote universal access to all knowledge. The Archive's purposes include offering permanent access for researchers, historians, scholars, people with disabilities, and the general public to historical collections that exist in digital format. The Internet Archive includes texts, audio, moving images, and software as well as archived web pages, and provides specialized services for information access for the blind and other persons with disabilities.
Created with abbyy2epub (v.1.7.6)

■ ■ ■ ■
SILICON COMPOSERS INC
Introducing the
SC/FOJ^"" VME
Single Board Computer

 [image: Picture #1]

 The SC/FOX VME Single Board Computer is a full VME slot-one Master/Slave System Controller board. Its speed and features make it an excellent choice for applications such as embeddedsystems control, data acquisition, image and numerical processing, process control, factory automation, machine control, inspection systems, robotics, and real-time systems control.
Using the Harris RTX 2000^™ real-time Forth chip, the SC/FOX VME hits 18 MIPS at 12 MHz with burst speeds up to 60 MIPS, by executing multiple Forth primitive instructions per clock cycle.
In the U.S. contact: Silicon Composers (415) 322-8763 208 California Avenue Palo Alto, CA 94306
In England contact: Data Application Ltd (0285) 651828
16 Dyer Street, Cirencester, Glos., GL7 2PF England
SC/FOX VME Single Board Computer •Uses industrial RTX 2000*™ microprocessor. •16, 20, or 24 MHz input clock operation. •32K to 512K bytes 0-wait-state SRAM. •64K bytes shadow EPROM. •5M byte per second SCSI port. •Two 56K baud RS232 serial ports. •Parallel printer port.
•6U, 233mm by 160mm Eurocard-size board. •Two 50-pin application headers. •Optional prototyping plug-on board.
VME Slot-1 System Controller
•Arbitrates bus request 0 to 3. •Sys-clock and lACK daisy-chain drivers.
• 16-microsecond Bus Timer.
VME Bus Master
•D16/D08(EO) capability. •Supports bus requests 0 to 3. •Release-on-request or release-when-done. •Supports all address modifier codes. •Word or byte transfers. •Generates/Handles all 7 VME interrupts. 1-7. •Release-on-acknowledge interrupter. •Interrupts on interrupt Ack and bus error. •AC failure on NMI.
VME Bus Slave
•Maps to full 16M-byte VME address space •128K dual-ported 0-WS static RAM
SC/Forth Language in EPROM
•Interactive Forth based on Forth-83 Standard.
•Vectored I/O and recursion.
•Supports ASCII text file or block source code.
• 15 level prioritized multitasking. •Extended control structures. •Code overlays and 2nd page support. •Easy turnkey system generation.
RTX 2000 Forth Microprocessor
•Industrial 16-bit CMOS chip in 85-pin PGA •83.33ns machine cycle at 12 MHz system clock •1-cycle instruction execution. •1-cycle 16-bit multiply.
• 14-prioritized interrupts, 4-cycle later.c\ •8-channel multiplexed 16-bit I/O b-s •Two on-chip 256-word stack memor.es •Three on-chip 16-bit timer/counters
Forth Dimensions
2
I
FORTH
DIMENSIONS
REUABLE 8086 & 80286 DIVISION - DAVID ARNOLD
5
The Intel 8086 and 80286 microprocessors have bugs in their hardware signed division routines. The resulting errors can disrupt a program or cause a crash. The author describes the bugs, provides remedies, and discusses valid division errors.
EXTENDED-PRECISION MATH MADE EASY - DOUGLAS ROSS 1 /(J
I To do extended-precision math easily, one must keep track of the carry generated when two cells are added or sub^ 1 • tracted. But the programmer cannot directly get at the carry in high-level Forth, and indirect methods have drawbacks. ^ However, only six new words are needed to do this and they can be added to any Forth system with minimal effort.
FORTH & THE THREE-NUMBER PROBLEM - LEONARD MORGENSTERN ^ 20
- For beginners, a well-designed programming problem reveals Forth-specific techniques that can be applied in other ■ |i situations. The problem presented here: a user enters three numbers and just presses the return key; the computer must ^ display their sum. On the way to a solution, one learns about Forth's outer interpreter and how to modify it.
FORTH ASSEMBLER & FREE USE OF LABELS - CHESTER H. PAGE
I ■ Many microprocessors have convenient conditional branching commands and, with a conventional assembler, labels 1 ■ can be used with them; the assembler converts the labels to proper jump addresses. The author chose to create a 6502 ^ Forth assembler with all the advantages of labels, and encountered some interesting design challenges.
FORST: A 68000 NATIVE-CODE FORTH - JOHN REDMOND =f 26
.|. This is the third in a five-part series about ForST for the Atari ST. The author shares his implementation of local 1. variables, illustrated with an arithmetic package using IEEE short reals, the Sieve, and the Towers of Hanoi. Many W ForST concepts will be, with careful planning, transferable to MS-DOS environments.
"TESTING TOOLKIT," REVISITED 35
Corrections to the code published with Phil Koopman Jr.'s "Testing Toolkit."
Editorial Advertisers Index
4 41
Best of GEnie FIG Chapters
30 42—3
Reference Section 36
Volume XII, Number 4
3
Forth Dimensions
EDITORIAL
MID-LIFE CRISIS
A subject of frequent enquiry among Forth programmers is the future of their language. Is it a prodigy, a pariah, or an idiot savant? Is it dying or just having growing pains? And what are the Forth pioneers doing now—are they churning out C in Unix environments, designing closed systems driven by machine code, or doing the middle-management shuffle? Is it possible to earn a living with Forth any more?
At times Forth seems like someone who works for ten or twenty years, raises a family, faces a few challenges successfully, and then wakes up one morning to ask, "But what do I want out of life? What will I do when I grow up? Is life passing me by?" Past achievements fade, the future is hidden, and a paralyzing uncertainty sets in.
The computing world has changed dramatically over the years and so have the values of its populace. The first microcomputers represented real personal power and freedom wrested from the mainframe priesthood. For a while, everyone with a computer became a programmer to some extent. Eventually, though, the complexity of "micro" systems rivalled or surpassed even that of their bulkier ancestors. Now, most users have no wish to be programmers or to get close to the innards of their machines, and a new kind of priesthood has emerged to minister to their needs.
As the programming horizons expanded, and as the speed and memory constraints of early microcomputers were shattered, Forth's minimalist and relatively austere origins came to seem a little quaint and out of touch to outsiders. Some complained that the computer scientists largely ignored Forth, but many Forth developers ignored computer science, too, except in a
wish-you-were-here kind of way. A few engineering departments and educators found Forth to be a useful alternative, and some businesses allowed Forth as a prototyping language. But it seemed that Forth vendors thrived more when they supplemented product sales with consulting and contract programming; even the fiercest of fanatics stopped forecasting a day when Forth would be on every hard drive.
Still, the very scope of modem technology ensures that it is possible to carve out a profitable and enduring niche somewhere, which is the challenge confronting the entire Forth community. To do so will require our every resource, the collective understanding and vision of vendors, academics, professionals, engineers, and computer scientists equally. Like the person stuck in a mid-life crisis, we must start from where we are, not from where we wish we were. The lack of a guaranteed outcome, or the specter of past mistakes, must not prevent us from planning for the future together.
—Marlin Ouverson Editor
Forth Dimensions
Published by the Forth Interest Group
Volume Xn, Number 4 November/December 1990 Editor Marlin Ouverson Advertising Manager
Kent S afford Design and Production
Berglund Graphics Circulation/Order Desk Anna Brereton
Forth Dimensions welcomes editorial material, letters to the editor, and comments from its readers. No responsibility is assumed for accuracy of submissions.
Subscription to Forth Dimensions is included with membership in the Forth Interest Group at $30 per year ($42 overseas air). For membership, change of address, and to submit items for publication, the address is: Forth Interest Group, P.O. Box 8231, San Jose, California 95155. Administrative offices and advertising sales: 408-277-0668.
Copyright © 1990 by Forth Interest Group, Inc. The material contained in this periodical (but not the code) is copyrighted by the individual authors of the articles and by Forth Interest Group, Inc., respectively. Any reproduction or use of this periodical as it is compiled or the articles, except reproductions for non-commercial purposes, without the written permission of Forth Interest Group, Inc. is a violation of the Copyright Laws. Any code bearing a copyright notice, however, can be used only with permission of the copyright holder.
About the Forth Interest Group
The Forth Interest Group is the association of programmers, managers, and engineers who create practical. Forth-based solutions to realworld needs. Many research hardware and software designs that will advance the general state of the art. FIG provides a climate of intellectual exchange and benefits intended to assist each of its members. Publications, conferences, seminars, telecommunications, and area chapter meetings are among its activities.
"Forth Dimensions gSSN 0884-0822) is published bimonthly for $24/36 per year by the Forth Interest Group, 1330 S. Bascom Ave., Suite D, San Jose, CA 95128. Second-class postage paid at San Jose, CA. POSTMASTER: Send address changes to Forth Dimensions, P.O. Box 8231, San Jose, CA 95155. ■
Forth Dimensions
Forth-83
RELIABLE 8086
DIVISION
DAVID ARNOLD - KIRKSVILLE, MISSOURI
The Intel 8086 and 80286 microprocessors of the 808x series have some serious, but correctable, bugs in their hardware signed division (the CPU instructions, not the numeric coprocessor functions):
1. Under certain conditions, the 8086 does a division error interrupt when the result would have been valid.
2. The division error interrupt of the 80286 saves the wrong return address.^
If an adequate machine code interrupt handler is not in place, division errors could disrupt a program or cause the computer to crash. An important number of computers use one of these processors or a work-alike variant. The IBM PC, XT, and AT; the IBM PS-2 Models 25,30, and 50; and their many clones are some prominent examples. I'll try to describe the bugs and then show some remedies. The remedies add about 15-50 percent to the execution time of Forth division, and also provide useful information about valid division errors.
The Sample Code
The twenty-four screens of Forth source code include some examples of 808x hardware division and four ways to use it to do Forth-83 division. Screen one, on lines 8-12, determines which demonstration section will be compiled. Just comment out all but the one line that compiles the desired section. The essential source code for each division method occupies about half a dozen screens. It was developed with a Forth-83 system with a Laxen and Perry F83 assembler on a Tandy lOOOSX computer (a fairly compatible IBM PC clone with an 8088 CPU). The 80286 bug fixes have been verified and tested slightly on an IBM PS-2 Model 50 and a Tandy TL/2.
808x hardware signed division with the IDIV instruction is demonstrated on screen five. The examples return a flag that shows whether a division error interrupt occurred.
Division method one (screens six through eight) does a Forth division with no error checks. Its speed and size is a baseline for comparison with the more practical methods.
Method two (screens ten through 14) uses a specially installed division error interrupt handler that sets a flag and accommodates the erroneous return address of the 80286. To accommodate the 8086 spurious error, the arithmetic is re-done with general-purpose reliable code if an IDIV instruction caused an interrupt.
Method three (screens 16-19) checks for imminent division error interrupts and takes special action to avoid them.
Method four (screens 21-24) uses reliable unsigned division and high-level Forth to synthesize signed division. It's very slow.
When they're compiled, the IDIV demos on screen five and division methods one and two each install a machine code handler for the division error interrupt, INT 0. BUILD_' INTO is used once at compile time to fill ' INTO with the four-byte segment:offset address of the new interrupt handler. After ' into is initialized,
SWAP_iNTO is used to swap the contents of the current system vector with the contents of ' INTO. Using SWAP_INTO a second time restores the saved original vector. The operator should restore the original before leaving Forth.
808x Hardware Division
Hardware integer division with 808xseries processors is very quick. An IBM PC (one of the slowest, with an 8088) can execute a machine code instruction in as little as 35 microseconds. Forth system overhead (stack access, flooring the results, and operating an inner interpreter) and accommodating the division bugs increase that to about 65-100 microseconds. The 80286 processor is even faster.
The IDIV and DIV instructions, respectively, do signed and unsigned division on integers of two basic sizes (Figure One). The signed results are unfloored; a nonzero remainder has the same sign as the dividend. Signed numbers are represented in two's complement form.
If the divisor is zero or if the ideal quotient would be too large to express in the quotient register, the chip does an interrupt through system interrupt vector zero, and the quotient and remainder registers are left undefined.^ INT 0—which is variously called the division-error, division-exception, division-overflow, or divide-by-zero interrupt—cannot be forestalled by disabling maskable interrupts with the CLI instruction.^ If an appropriate machine code interrupt handler is not at the location in the vector, the computer will almost surely do something wrong.
An existing interrupt handler might be inadequate or incoherent. MS-DOS provides a simple handler that just displays a "Division Error" message and then termi
Applications can work bettery and without slow software fixes.
Volume XII, Number 4
5
Forth Dimensions
nates the current program. Such a premature exit might bypass essential cleanup procedures, such as finishing and saving work in progress, restoring the display, or restoring various interrupt vectors. An incoherent example is a popup desktop organizer that I use. It leaves the division error vector pointing to machine code that always crashes. (The popup never crashes. Maybe the code is unused or is intended to work in the run-time context of compiled Pascal.)
A program that may cause a division error interrupt (either spurious or true) should install an interrupt handler for itself and should restore the old one before it finishes. If the program is memory resident, it should restore the interrupt before it goes to sleep. A programmer's guide should describe interrupts and ways to change them.
The Division Bugs
Figure Two illustrates the bug in the 8086 processor. If signed division (IDIV) on a 32-bit dividend would produce an ideal quotient of -8(X)0h—or, on a 16-bit dividend, an ideal quotient of -80h—the chip does a spurious division error interrupt.* There are some bright spots in this foul-up, though: (1) Only a small portion of possible operands produce the bug, and with a little effort they can be detected beforehand. (2) Unsigned division (DIV) works fine. And (3) if a division error did not occur, the quotient and remainder are valid. So there can be no false indications of validity, and reliable methods can either redo cases of possibly spurious interrupts or can avoid them altogether. The task of sifting answers from uncertain results can be fairly simple and straightforward.
Several methods can deal with the 8086 spurious division error:
1. Do nothing about it, if your application would never cause a division error.
2. Install a division error interrupt handler that sets a flag. If the flag is set after a signed division finishes, a reliable general-purpose routine can re-do the problem. The slower code would either confirm the error or return correct results.
3. Check the operands. Avoid true division errors and provide stock results for
Dividend
Divisor
bits 31-16
bits 15-0
16-bit
DX
AX
Quotient
Remainder
16-bit
16-bit
AX
DX
16-bit memory or work register
32-bit/16-bit division
Dividend
Divisor
bits 16-!
bits 7-0
1-bit
AH
AL
Quotient
Remainder
8-bit
8-bit
AL
AH
8-bit memory or work register
16-bit/8-bit division
Figure One. 8086 hardware division.
Quotient Remainder
Quotient Remainder
	8000
	
	xxxx
	
	80
	
	XX

	AX
	DX
	AL
	AH

32-bit/16-bit
16-bit/8-bit
Example: (-8000/1) Ideal quotient,remainder
-8000h,0
MOV AX,-800Oh ; low word of 32-bit dividen;
CWD ; sign extend dividend
MOV BX,1 ; 16-bit divisor
IDIV BX ; signed division
Ideal quotient of -8000h or -80h causes spurious 8086 division error interrupt, INT 0.
Figure Two. 8086 DIV bug.
Forth Dimensions
6
ErrorHandle mov word ptr [div_err?],OFFFFh iret
SampleDiv mov ax,1234h mov dx,5678h mov bx,0
div bx
INT 0 should save this address. 80286 saves this address instead.
after INT 0
SP
xxx
CPU FLAGS CS -IP
after IRET SP
—stack—
xxx cpu flags
CS
Division error interrupt saves CPU flags and return address on the stack and jumps to ErrorHandle.
IRET restores flags from the stack and jumps to return address (CS:IP).
Figure Three. 80286 return address bug.
UM/MOD
/MOD / MOD
*/MOD */
intermediate results
21
32-bit unsigned dividend 16-bit unsigned divisor
16-bit signed dividend 16-bit signed divisor
32-bit signed dividend 16-bit signed divisor
16-bit signed division by two
All results are floored.
(Remainder has the same sign as the divisor.)
Figure Four. Forth-83 division.
cases of imminent spurious error.
4. Synthesize signed division with the properly functioning unsigned division.
5. Do long division with traditional bitby-bit looping machine code.
6. Use an 8087 math coprocessor or software emulation of an 8087.
The first method might work in a program that's used only in particular hardware for a special application. The second and third methods are reliable and fairly quick. The fourth and fifth are generally slow, but are adaptable to almost any extent. The sixth is expensive in hardware, and is slow in software emulation.
Figure Three illustrates the incorrect return address saved by the 80286 division error interrupt. It should push onto the stack the address of the instruction that follows the errant divide instruction. Instead, the address of the division instruction itself is pushed onto the stack.* An IRET under that condition would just return to the instruction that caused the interrupt. The dividend and divisor are left unchanged on all the machines I've tested,* and a never-ending loop ensues.
Here are some methods for dealing with the 80286 bug:'
1. Do nothing about it if division error never occurs.
2. Install a special interrupt handler that reaches into the stack and bumps the saved return address past the division instruction.
3. Install a special interrupt handler that loads the dividend and divisor with dummy values that do not cause an error. Upon return from the interrupt, a superfluous division is performed on the dummies and then execution continues.
The first method might work in hardware that never causes errors.
If the second method could determine whether the current processor were an 80286 (and not an 8086 or 80186), it could use a table of opcodes and corresponding instruction lengths to adjust the return ad
Volume XII, Number 4
7
Forth Dimensions
dress. If a few nops were compiled after the division instruction, the return address could be bumped a constant amount on any processor. The NOPs would waste time, though.*
The third method would work if the divisor were in a known location and would be given a non-zero value. When a division error occurs the dividend (in the CPU) is left undefined, so nothing would be lost by changing it. If the divisor were in ROM or in a permanent RAM-based table and couldn't be changed, it presumably would never be zero. In that case, just zeroing the dividend would be sufficient.
Figure Four lists the four types of integer division required in a Forth-83 system, Forth-83 also requires that division results be floored. I'll say something about that, and then describe some reliable division methods.
Floored and Unfloored Division
School children are taught floored division. The remainder has the sign of the dividend. If the dividend and divisor have different signs (and if the quotient is nonzero), the quotient is negative; otherwise, it is positive. This is a natural way to work with sizes of things. It's a fairly easy way to do hand-worked long division, and the unfloored remainder is a natural starting point for further division to increase the precision of the quotient with additional digits. Unfloored quotients, positive or negative, have an average bias of 0.5 toward zero.
The floored remainder has the sign of the divisor. The sign of the quotient is like that of unfloored division. However, it turns out that whenever the signs of the dividend and divisor differ, the floored quotient is always non-zero. Floored quotients have an average bias of 0.5 in the negative direction.'
Unfloored results are easily produced by adjusting the signs of the quotient and remainder of unsigned division. Floored results can be produced by simple adjustments of the unfloored quotient and remainder (Figure Five).
Floored and unfloored results are not two different answers for the same division. They both describe the same thing; they just express it differently. For example, look at the problem in Figure Six. The dividend and divisor are 3 and -5. The unfloored quotient and remainder are 0 and
	
	
	unfloored
	floored
	
	

	dividend
	divisor
	q
	r
	q'
	r'
	
	

	+
	-1
	+
	+
	+
	+
	
	

	
	
	uq
	ur
	q
	r
	
	

	+
	
	
	J.
	
	
	
	

	
	
	-uq
	ur
	q
	r
	[if
	r=0]

	
	
	
	
	q-l
	r+dvs
	[if
	rOO]

	
	+
	
	
	
	+
	
	

	
	
	-uq
	-ur
	q
	r
	[if
	r=0]

	
	
	
	
	q-l
	r+dvs
	[if
	rOO]

	
	
	-1
	
	+
	
	
	

	
	
	uq
	-ur
	q
	r
	
	

	uq,ur =
	unsigned quotient/emainder of abs(dividend)/abs(divisor)
	
	

Figure Five. Floored/unfloored division conversions.
dividend divisor (+3/-5) +3 -5
quotient
0 -1
-3/5
Remainders:
unfloored — floored
remainder
+3 unfloored -2 floored fractional
1
-2
-1 0. . .+1. . .+2
+3
Quotients:
floored — fractional unfloored
Figure Six. Floored/unfloored example.
Forth Dimensions
8
Volume Xfl, Sumber 4
	Method
	UM/MOD
	/MOD
	*/MOD
	Size

	1
	61 |is
	67 ILLS
	101 }1S
	324 hvtes

	2
	69
	98
	139
	473

	3
	73
	101
	145
	111

	4
	73
	1.71 ms
	2.07 ms
	448

	
	2/
	(M/MOD)
	M/MOD
	M*

	2&3
	27 ^is
	
	
	

	4
	
	1.01 ms
	1.45 ms
	0.43 ms

Method 1: No error handling
Method 2: Recalculates after low-level errors
Method 3: Avoid division error interrupts
Method 4: High-level signed division
Indirect-threaded code Forth system,
IBM PC clone with 8088 CPU at 4.77 MHz.
Sample timing loops:
0 0 do i 7 11 3drop loop (idle) 0 0 do i 7 11 */mod 2drop loop (test)
(time/division) = (test-idle)/65536
Figure Seven. Division statistics.
3. The floored quotient and remainder are 1 and -2. The fractional quotient is -3/5, with the fractional remainder implicitly zero. In each case, multiply the quotient by the divisor and add the remainder: the result is the dividend. Notice that rounding the fractional quotient either left or right to the nearest whole number results in either the floored or unfloored quotient, respectively.
Four Division Methods
Here are four ways to do Forth division with 808x division. Method One doesn't accommodate division errors, and is included for comparison with more reliable methods. Methods Two and Three are practical 8086 code implementations of Forth83 division that could be transplanted direcdy into a Forth system. Method Four is mostly in high-level Forth and might work well on speedy Forth engines.
Division Error Flag
The methods that accommodate division error (Methods Two, Three, and Four)
leave their error status in div_err?— false if the results are valid, true if they are not. Error or not, the same number of items is left on the stack. No other error action is taken.
Low-level division begins by clearing Div_ERR? with a FALSE flag. High-level division clears DIV_ERR? by using the low-level word UM/MOD. If the divisor is zero or if quotient overflow occurs during division, a TRUE flag is left in DI v_ERR?. If quotient overflow occurs during unfloored-to-floored conversion, DI V_ERR? is updated with a true flag. If a spurious division error interrupt occurs, Div_ERR? momentarily contains TRUE, but is immediately cleared and updated when the auxiliary code re-does the problem.
Flooring Conversion
All floored results are obtained by doing unfloored division and then converting the results. If the signs of the dividend and divisor differ and if the remainder is non
zero, the divisor is added to the unfloored remainder and the unfloored quotient is decremented by one. If the quotient changed sign when it decremented, it overflowed the word size. The single-precision CODE operator /MOD doesn't check for flooring conversion overflow because it can't occur there. (Its greatest negative quotient is the result of -8000h/l, which has a remainder of zero and, therefore, does not require adjustment of the quotient.)
Method One
No error checks Screens Six through Eight
Method One demonstrates nearly the greatest possible speed of Forth division with the 808x series (I think). It does no error checking, provides no error status flag, and isn't reliable. A dummy interrupt handler is installed to keep the computer from crashing when a division error interrupt occurs. Roored results are produced. The method is basically Method Two without error handling.
Method Two
Recalculate possibly spurious error Screens Ten through 14
Method Two accommodates the 8086 spurious division error and the 80286 erroneous return address, and takes advantage of nearly the full speed of 808x division. First, the flag in Div_ERR? is cleared, then division is performed with DIV or ID IV. If a division error interrupt occurs, a specially installed interrupt handler posts a TRUE flag in div_err? and loads the dividend and divisor with dummy values that cannot cause a division error interrupt—the dividend (DX:AX) is loaded with zero and the divisor (BX) with one. (Any non-zero dummy divisor would do.)
On 80286 machines, a superfluous division takes place immediately upon return from an interrupt, and then execution continues. If DI v_ERR? is found to have been set, an 8086 may have caused a spurious interrupt. The arithmetic is re-done with reliable general-purpose code that either confirms the error or returns correct results. The final error status is left in
DIV_ERR?.
The slight extra effort of installing an interrupt handler might be more than offset by the extra speed and simplicity of arithmetic routines that don't need to stand on their heads to avoid division error inter
\ olume XII, Number 4
9
Forth Dimensions
rupts. Unless a program were peculiarly attached to interrupt-causing operands, not much time would be used re-doing the arithmetic.
UM/MOD
DIV does the dividing. If the division error flag is set, a true division error occurred.
/MOD / MOD */MOD */ The ID IV instruction does the division. Then, if the division error flag was set by an interrupt, SAFE_M/MOD is used to either confirm the error or to return correct answers. The standard Forth division words would do a machine code jump directly to the code body of SAFE_m/mod, which would continue just as if it had been called directly. SAFE_M/MOD is about the same as */MOD of Method Three, and avoids division error interrupts altogether.
2/
This signed division by two is done with an 808x arithmetic shift-right instruction, SAR. All bits are shifted right, and the sign bit is filled with the same value that the old sign bit held. It directly produces a floored result, and it can't overflow the quotient word size.
Method Three
Detect imminent division error Screens 16-19
Method Three checks for an imminent division error interrupt and provides its own error action. If a spurious 8086 error is about to occur, a stock answer is provided. If a true error is imminent, the problem is abandoned and a division error is flagged. The division error status is left in DIV_ERR?.
UM/MOD
This is nicely handled by the reliable Div instruction. If the high word of the dividend is equal to or greater than the divisor, division by zero or quotient overflow is imminent.
/MOD / MOD
These each have one case that would spuriously cause an 8086 division error interrupt, -8000h divided by 1. That special case can be swiftly and easily found before doing any division, and a stock result provided. Two cases would cause a true error, either a zero divisor or -8000h/-1. The tests
for imminent division error interrupt are a little intricate. Notice in screen 16, hne seven, that if the case -8000h/l is found, execution falls through with the proper quotient and remainder in registers AX and DX.
*/MOD */
These are tougher. Myriad intermediate double-precision results could cause quotient overflow, either spurious or true, and I don't know of a simple inspection of signed numbers that could spot them beforehand. The method I've used converts the operands to their absolute values and then uses unsigned division (Div).
2/
This is done with an 808x shift arithmetic right, SAR, and is foolproof. (See 2 / of Method Two.)
Method Four
High-level division Screens 21-24
Method Four uses reliable unsigned division and high-level Forth to synthesize signed division. It leaves its division error status in DIV_ERR?.
UM/MOD does low-level unsigned division with a check for an imminent division error. (M/MOD) ,FLOOR_QR,andM/MOD together perform high-level signed division. (M/MOD) does unfloored division, with a check for quotient overflow. FLOOR QRconverts an unfloored quotient and remainder to floored form, with a check for quotient overflow. M/MOD uses the two preceding words to do floored division. The Forth standard division words use this basic toolkit.
Division error can occur at several nesting levels as a dividend and divisor grind through these words. /MOD, for example, calls M/MOD, which calls FLOOR_QR and (M/MOD), which calls UM/MOD; and most of the subordinate words can have a division error. Rather than immediately abort computation at some indeterminate level, they take no action other than j)osting an error flag in DI V_ERR?. If a division error takes place early, later steps will be working with meaningless numbers. They won't crash, though, and DI V_ERR? can provide the last word on validity of the results.
Conclusions
Method One (no error checks) is some
what faster than the others and might work well in a hardware project that would never provide troublesome operands. Method Two (re-do possible error) is quick. It needs a special interrupt handler, a divisor that is known to be non-zero or that can be safely altered, and redundant auxiliary code. Method Three (avoid error) is a bit slower and is more portable. It doesn't juggle the host computer interrupt vectors, nor does it unpredictably alter the divisor. Method Four is completely portable to any Forth system that has unsigned division.
Figure Seven lists some size and speed statistics for the various division methods. Some specially coded equal-duration 3DR0P and 2DR0P definitions provided consistent stack clean-up for the emptyloop and test-loop times of UM/MOD and */MOD (which receive three 16-bit numbers but leave two).
These remarkable speeds were obtained on a pretty ordinary PC clone with an 8088 microprocessor. 80286-based computers, with which PCs share much software, are still faster. Applications that use a lot of integer division on these machines might be made to work better than we have expected if they accommodate the 808x division bugs and don't resort to slow software fixes.
Bibliography
Intel. iAPX 86, 88, 186, and 188 User's Manual Programmer's Reference, Intel Corporation, 1985.
The Intel programmer's reference books are nearly essential for doing much 808x programming. Some of the machine code instructions affect the processor flags in quirky ways, and some have optimized forms for using the accumulator registers (AX and AL). The section that describes the instructions seems fairly clear and complete, and provides many useful examples. Available from:
Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, California 95051
International Business Machines Corporation. Technical Reference Personal Computer AT, Part number 628(X)70. For a catalog of IBM technical references, write to: IBM Technical Directory P.O. Box 2009 (Continued on page 40.)
Forth Dimensions
10
Volume XH, Number 4
02Hay90dna) (FORGET'able larker)
ScreenI 1 Forth-B3
0 (8086 division
1 only forth definitions also deciial
2 create XHARK
3 vocabulary XDIV xdiv also
4 cr .(utils.) 2 dup u. load
5 here (Start address of division routines) b create DIVJRR? 0 ,
7
02Hay90dna)
	8
	\ cr
	. (808x division
	exaaples.)
	5 5
	thru

	9
	\ cr
	. (Div lethod 1.
	No checks.)
	6 Q
	
	thru

	a
	\ cr
	. (Div lethod 2.
	Redo error.)
	10
	14
	thru

	b
	\ cr .(Div aethod 3.
	Avoid error.)
	16
	19
	thru

	c
	cr
	. (Div lethod 4.
	High level.)
	21
	24
	thru

	d
	cr
	. (Div size :)
	here swap - u.
	
	
	

f only forth definitions also xdiv also deciial
Screen! 2 Forth-83
0 (systeB utils 28Mar90dna)
1 : \ (--) >in § 63 + dup 64 aod - >in ! ; iBaediate
2 : \S (--) 1024 >in ! ;
3 : THRU (first last --)
4 over over 1+ u< if 1+ snap do i u. i load loop then ; 5
6 : S>D (n ~ d) dup 0< ; (uses Forth-83 TRUE)
7 : DABS (d -- d') dup 0< if dnegate then ;
8 : 2DUP (nl n2 ~ nl n2 nl n2) over over ;
9 : 2DR0P (n n —) drop drop ;
a : NIP (nl n2 -- n2) snap drop ; b
c 0 0= constant TRUE d 1 0= constant FALSE e
f I sone definitions assuie that Forth TRUE = FFFFh = -1)
02May90dna) (808x seg:ofs)
Screen! 3 Forth-83
0 hex (80Bx division error interrupt handler
1 create 'INTO 4 allot 2
3 code NEMJNTO
4 OFFFF !'div_err? !) cs: lov (div_err? = true)
5 ax ax xor cxd 1 ! bx lov I safe 80286 duuy operands)
6 iret
7 end-code deciial 8
9 4 load (install/restore division error interrupt vector) a
b build_'intO (initialize segiofs in 'INTO)
c SHapJntO cr .(8086 division error interrupt installed.)
d
e
f
Screen! 4 Forth-83
0 hex (install/restore div err interrupt handler
1 code SHAP_INTO (~)
2 ax push bx push cx push dx push si push di push bp push
3 es push ds push
4 3500 ! ax lov 21 int < .. " ES:BX=5eg:ofs)
5 ds pop es push bx push ds push (.. ~ .. seg ofs seg >
6 'into !) dx Ids (.. - DS:DX=5eg!ofs)
7 2500 ! ax lov 21 int
8 ds pop 'into !) pop 'intO 2+ !) pop
9 es pop bp pop di pop si pop dx pop cx pop bx pop ax pop a next
b end-code c
d code BUILD_'INTO (-)
e ' nenJntO >body ! 'intO !) aov cs 'intO 2+ !) lov next f end-code deciial
Screen! 5 Forth-83
0 I B08x hardware division exaiples 02Hay90dna)
1 3 load (Coipile d install 8086 division error interrupt.) 2
3 code 16IDIV (dvdjo dvd_hi dvs — rei quo t=err)
4 ax ax xor ax div_err? lov (dear flag)
5 bx pop dx pop ax pop bx idiv
6 dx push ax push div_err? !) push
7 next
8 end-code 9
a code 8IDIV (b_dvd_lo b_dvd_hi b_dvs — bjei b_quo t=err)
b ax ax xor ax div_err? !) lov
c bx pop dx pop ax pop dl ah lov bl idiv
d bx bx xor ah bl lov bx push al bl lov bx push
e div_err? !) push next
f end-code
Screen! 6 Forth-83
0 (8086 division Method 1 No error checks /lod 02Nay90dna)
1 3 load (Coipile It install 8086 division error interrupt. 1 2
3 code /HOD (dvd dvs ~ rei quo)
4 bx pop ax pop
5 cMd (DX:AX=d_dvd BX=dys)
6 dx cx lov bx idiv I CX=dvd_5gn AX,DX=quo,rei)
7 bx cx xor 0< if (dvd \t dvs sgns differ?)
8 dx dx or 0<> if (rei nonz?)
9 ax dec bx dx add then then (floor quo,rei) a dx push ax push next
b end-code c \s
d No checks for division error or spurious interrupts, e Duiiy division error interrupt handler installed to keep f coiputer froi crashing through an undefined interrupt vector.
Volume XII, Number 4
11
Forth Dimensions
Screenl 7 Forth-83
0 (8086 divl No error checks t/aod
1 code t/nOD { nl n2 n3 ~ rei quo)
2 bx pop ax pop dx pop
3 dx iaul
4 dx cx lov bx idiv
5 bx cx xor 0< if
6 dx dx or 0<> if
7 ax dec bx dx add then
02Hay90dna)
dx push end-code
ax push next
(DX:AX=d_dvd BX=dv5) (CX=dvd_sgn AX,DX=quo,rea) (dvd k dvs sgns differ?) (res nonz?) then (floor quo,rea)
Screent 10 Forth-83
0 (8086 div2 INT 0 5afe_i/iod 1 of 2 02f1ay90dna
1 3 load (Conpile & install 8086 division error interrupt.
hex
code SAFE_M/nOD (d_dvd dvs — rea quo) bx pop dx pop ax pop OFFFF f div_err? t) lov dx di Bov bx cx aov
8 dx dx or
9 bx bx or a (cont.) b decioal
c d e f
(default flag = true) (keep dvd_sign & dvs) (dvd & dvs to absolute values) 0< if dx dx xor ax neg di dx sbb then 0< if bx neg then
(DX:AX=ud_dvd BX=u_dv5 DI=dvd_sgn CX=dv5)
Screent 8
Forth-83
Screent 11
Forth-83
0 (8086 divl No error checks ua/aod 2/
1 code UM/HOD (ud_dvd u_dvs — urei uquo)
02May90dna) 0 hex (8086 div2 5afe_a/iod 2 of 2
02nay90dna
bx pop bx div dx push end-code
dx pop ax pop ax push
next
7 code 2/
8 ax pop
9 end-code a
b : / (dvd dvs c : HOD (dvd dvs d : 1/ (nl n2 n3 e f
(n - n/2) ax sar ax push
next
- quo)
- rei)
- quo)
/■od nip ; /■od drop ; t/iod nip
1 bx dx cip u< if
2 bx div
3 di di or 0< if
4 cx di xor 0< if
5 ax neg
6 dx dx or 0<> if
7 then
8 ax di xor 0>= if
9 0 t div_err? t) a then
b then
c dx push ax push
d next
e end-code
f decieal
(iMinent overflow?)
(AX,DX=uquo,ureB DI=dvd_5gn CX=dv5)
dx neg then (dvd neg? rea = -urea)
(dvd i dvs signs differ?)
(quo = -uquo.) ax dec cx dx add then (floor quo,rea)
(AX,DX=quo',rea' DI=quo_5gn)
(quotient not overflow?)
aov (ok, flag = false)
Screent 9 Forth-83
0 (Forth division Hethod 2 notes Install interrupt 05Apr90dna)
1 8086 division error interrupt handler just sets a flag. 2
3 LoN level Forth division clears division error flag and uses
4 8086 DIV, IDIV, k SAR instructions. 5
6 UH/HOD and 2/ leave results on stack k take no error action. 7
8 Signed division uses IDIV k checks error flag. If flag is set,
9 arithaetic redone with slow k reliable word, which either a confiras error or returns correct results.
b
c IF DIV_ERR? is now TRUE, true division error occurred, and d division results on stack are invalid. Final stack depth is e saae, whether error or not. f
Screent 12 Forth-83
0 I 8086 div2 /aod 02nay90dna)
1 code /HOD (dvd dvs ~ rea quo)
2 ax ax xor div_err? t) ax aov (clear flag)
3 bx pop ax pop
4 cwd (DX:AX=d_dvd BX=dvs)
5 ax push dx push bx push (keep division operands)
6 dx cx aov bx idiv (CX=dvd_sgn AX,DX=quo,rea)
7 bx cx xor 0< if (dvd k dvs sgns differ?)
8 dx dx or 0<> if (rea nonz?)
9 ax dec bx dx add then then (floor quo,rea)
a 0 t divjrr? t) cap (Error? Redo with safe word.)
b 0<> if ' 5afe_a/aod >body t) jap then
c 6 t sp add dx push ax push next
d end-code
e
f
Forth Dimensions
12
Volume XII, Number 4
Screen! 13 Forth-83
0 hex (8086 div2 t/aod
1 code l/nOD (nl n2 n3 ~ rei quo)
2 ax ax xor ax div_err? I)
3 bx pop ax pop dx pop
4 dx iaul
5 ax push dx push bx push
6 dx cx lov bx idiv
7 bx cx xor 0<
8 dx dx or 0<> if
9 ax dec bx dx add then a ax cx xor
b 0< if OFFFF t divjrr? t) bi
c 0 I div_err? t) cip
d 0<> if ' 5afe_i/iod >body ♦) jip then
e 6 t sp add dx push ax push next
f end-code decinal
■ov (clear flag)
(DX:AX=d_dvd BX=dvs) (keep division operands) (CX=dvd_5gn A)(,DX=quo,rBi) (dvd li dvs sgns differ?) (rei nonz?) then (floor quo,ren 1
(quot overflow?) / then
(Error? Redo with safe word.)
ScreenI 16 Forth-83 02May90dna) 0 hex (8086 div3 /lod
1 code /NOD (dvd dvs ~ rei quo)
2 bx pop ax pop
3 di di xor di dec (
4 bx bx or 0<> if
5 ax cx aov bx dx aov
6 8000 t cx xor dx inc cx dx or 0<> if
7 bx dx >ov dx dec cx dx or CO if
8 cwd dx cx lov bx idiv
9 bx cx xor 0< if dx dx cr 0<> if a ax dec bx dx add then then b then c di inc d then
e then dx push ax push di div_srr? t) f end-code deciial
02Hay90dna
default flag (dvs=0?)
true)
(dvd=-8000 dv5=-l?)
(dvd=-B000 dv5=I?)
(signed division)
(quo neg? rei nonz?)
(floor quo,rea)
(ok, flag = false)
■ov next
Screent 14 Forth-83
0 (8086 div2 / aod 1/ ua/iod 2/ 02Hay90dna)
1 : / (dvd dvs — quo) /aod nip ;
2 : HOD (dvd dvs ~ rea) /aod drop ; 3:1/ (nl n2 n3 ~ quo) t/aod nip ; 4
5 code UH/MOD (ud_dvd u_dvs ~ urea uquo)
6 ax ax xor ax div_Brr? I) aov (clear flag)
7 bx pop dx pop ax pop
8 bx div
9 dx push ax push next a end-code
b
c code 2/ (n -- n/2)
d ax ax xor ax div_err? t) aov ax pop ax sar ax push next
e end-code
f
Screent 17 Forth-83
0 hex (8086 div3 l/aod 1 of 2 28Apr90dna)
1 code t/«OD (nl n2 n3 ~ rea quo)
2 bx pop dx pop ax pop
3 OFFFF I div_err? t) aov (default flag = true)
4 dx iaul (signed aultiply)
5 dx di aov bx cx aov (keep dvd_sign I dvs)
6 (dvd ii dvs to absolute values)
7 dx dx or 0< if dx dx xor ax neg di dx sbb then
8 bx bx or 0< if bx neg then
9 (cont.)
a deciaal (DX:AX=ud_dvd BX=u_dvs DI=dvd_5gn CX=dvs)
b
c
d
e
f
Screen! 15 Forth-83
0 (Forth division Hethod 3 notes Avoid interrupt 05Apr90dna)
1 CODE Hords check operands to avoid 8086 division error
2 interrupt, and use 8086 DIV and IDIV. Division results left on
3 stack, and division error status left in DIV_ERR? . 4
5 Division error avoidance checks —
6 Check for iaainent spurious 8086 division error.
7 If so, provide stock answer.
8 Check for iaainent true overflow.
9 If so, abandon coaputation.
a If not, continue and leave coaputed answer, b
c Final stack depth is saae, whether error or not.
d
e
f
Screen! IB Forth-83
0 hex (8086 div3 t/aod 2 of 2 28Apr90dna)
bx dx cap u< if (iaainent overflow?)
bx div (AX,DX=uquo,urea DI=dvd_sgn CX=dvs)
di di or 0< if dx neg then (dvd neg? rea = -urea)
cx di xor 0< if ax neg
dx dx or 0<> if then
ax di xor 0>= if
0 ! div_err? !) i then then
dx push ax push next
end-code
(dvd I[dvs signs differ?)
(quo = -uquo.) ax dec cx dx add then (floor quo,rea)
(AX,DX=quo',rea' DI=quo_5gn)
(quotient not overflow?) 3V (ok, flag = false)
f deciaal
Volume XII, Number 4
13
Forth Dimensions
Screenl 19 Forth-83
0 (Forth div3 / lod %l II 28Apr90dna)
1 : / (dvd dvs ~ quo) /lod nip ;
2 : nOD (dvd dvs ~ rei) /aod drop ;
3 : t/ (nl n2 n3 ~ quo) t/iod nip ; 4
5 code UH/MOD (ud_dvd u_dv5 — urei uquo)
6 bx pop dx pop ax pop
7 di di xor di dec (default flag = true)
8 bx dx cip u< if (no iniinent overfloM?)
9 bx div di inc then (ok, flag = false) a dx push ax push di div_err? i) lov next
b end-code c
d code 21 (nl -- n2)
e ax ax xor ax div_err? i) aov ax pop ax sar ax push next f end-code
Screen! 22 0 (Forth div4 (H/HOD) (
Screen! 20 Forth-83
0 (Forth division Method 4 notes High level 05Apr90dna)
1 Un/HOD does all Iom level division. 2
3 Un/HOD clears DIV_ERR? and checks operands for iaiinent division
4 error. If division error iiiinent, arithmetic is abandoned and
5 TRUE is posted in DIV ERR?. 6
7 All signed division done at high level. If quotient overfloNs
8 during flooring conversion, TRUE is posted in DIV ERR?. 9
a IF DIV_ERR? is TRUE when division done, division results on
b stack are invalid. Final stack depth is saie, whether error or
c not.
d
e
f
Screen! 21 Forth-B3
0 (8086 div4 ua/aod utils 28Apr90dna)
1 code UH/HOD (ud_dvd u_dvs ~ urea uquo)
2 bx pop dx pop ax pop
3 di di xor di dec (default flag = true)
4 bx dx cip u< if (no iaainent overflow?)
5 bx div
6 di inc (ok, flag = false)
7 then
8 dx push ax push di div_err? !) aov
9 next
a end-code b
c : 7NE5ATE (n sgn ~ n') 0< if negate then ; d ! 7DMEGATE (d sgn - d') 0< if dnegate then ; e : -ALIKE? (sgnl sgnl ~ t=signs differ) xor 0< ; f : SET DIV ERR (~) true div err? :
Forth-83 unfloored division d_dvd n_dvs ~ rea quo
02May90dna)
over >r 2dup xor >r >r dabs r> abs ua/aod rfi ?negate
dup r> -alike? over and if set_div_err then swap r> ?negate swap ;
-r- dvdjgn quo_sgn) .. — ud_dvd u_dv5) .. ~ urea uquo) .. ~ .. quo)
uquo aaybe too big? k nonz?) flag division error) .. ~ rea quo)
\s If final value of quotient is non-zero and its sign differs d froa noainal coaputed sign, quotient overflowed Mordsize. e Overflow can occur during unsigned,division, too. f Flag in DIV_ERR? is last word on validity of division results.
Screen! 23 FDrth-83
0 (Forth div4 floor division results 05Apr90dna)
1 : FLOOR_QR (rea quo dvs dvd_sgn — rea' quo')
2 over xor (..--.. quo_sgn)
3 dup 0< 4 pick and if (quo_5gn neg? rea nonz?)
4 >r (-r- quo_5gn)
5 rot + swap 1- (.. ~ rea' quo')
6 dup r> -alike? (quot overflow?)
7 if set_div_err then (flag division error)
8 2dup
9 then (.. ~ rea' quo' x x) a 2drop ;
b \s Receive unfloored reaainder I quotient, divisor, l sign of
c dividend. Coapute noainal sign of quotient. If noainal
d quotient negative I reaainder non-zero, adjustaent needed. Add
e divisor to reaainder, tt decreaent quotient.
f If quotient sign now unlike noainal sign, quotient underflowed.
Screen! 24 Forth-83
0 (Forth div4 aixed precision Forth division 05Apr90dna)
1 : HI (nl n2 ~ d)
2 2dup xor >r swap abs swap abs (.. ~ ul u2 -r- pro sgn)
3 uat
4 r> ?dnegate ; 5
6 : M/MOD (d_dvd dvs ~ rea quo)
7 over >r dup >r (.. ~ d_dvd dvs -r- dvdjgn dvs)
8 (a/aod) r> r> floor qr ; 9
a ; /MOD (dvd dvs — rea quo) >r s>d r> a/aod ;
b : / (dvd dvs — quo) /aod nip ;
c : HOD (dvd dvs ~ rea) /aod drop ;
d : »/MOD (nl n2 n3 ~ rea quo) >r at r> a/aod ;
e : t/ (nl n2 n3 — quo) t/aod nip ;
f : 2/ (n - n/2) 2 / ;
Forth D imensions
14
Volume XII, Number 4
HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION
(513) 748-0390 P.O. Box 69, Springboro, OH 45066
MEET THAT DEADLINE ! ! !
• Use subroutine libraries written for other languages! More efficiently!
• Combine raw power of extensible languages with convenience of carefully implemented functions!
• Yes, it is faster than optimized C!
• Compile 40,000 lines per minute!
• Stay totally interactive, even while compiling!
• Program at any level of abstraction from machine code thru application specific language with equal ease and efficiency!
• Alter routines without recompiling!
• Use source code for 2500 functions!
• Use data structures, control structures, and interface protocols from any other language!
• Implement borrowed feature, often more efficiently than in the source!
• Use an architecture that supports small programs or full megabyte ones with a single version!
• Forget chaotic syntax requirements!
• Outperform good programmers stuck using conventional languages! (But only until they also switch.)
HS/FORTH with FOOPS - The only flexible full multiple inheritance object oriented language under MSDOS!
Seeing is believing, OOL's really are incredible at simplifying important parts of any significant program. So naturally the theoreticians drive the idea into the ground trying to bend all tasks to their noble mold. Add on OOL's provide a better solution, but only Forth allows the add on to blend in as an integral part of the language and only HS/FORTH provides true multiple inheritance & membership.
Lets define classes BODY, ARM, and ROBOT, with methods MOVE and RAISE. The ROBOT class inherits:
INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftArm If Simon, Alvin, and Theodore are robots we could control them with: Alvin's RightArm RAISE or: +5 -10 Simon MOVE or: +5 +20 FOR-ALL ROBOT MOVE Now that is a null learning curve!
WAKE UP ! ! !
Forth is no longer a language that tempts programmers with "great expectations", then frustrates them with the need to reinvent simple tools expected in any commercial language.
HS/FORTH Meets Your Needs!
Don't judge Forth by public domain products or ones from vendors primarily interested in consulting they profit from not providing needed tools! Public domain versions are cheap - if your time is worthless. Useful in learning Forth's basics, they fail to show its true potential. Not to mention being s-l-o-w.
We don't shortchange you with promises. We provide implemented functions to help you complete your application quickly. And we ask you not to shortchange us by trying to save a few bucks using inadequate public domain or pirate versions. We worked hard coming up with the ideas that you now see sprouting up in other Forths. We won't throw in the towel, but the drain on resources delays the introduction of even better tools. Don't kid yourself, you are not just another drop in the bucket, your personal decision really does matter. In return, well provide you with the best tools money can buy.
The only limit with Forth is your own imagination!
You can't add extensibility to fossilized compilers. You are at the mercy of that language's vendor. You can easily add features from other languages to HS/FORTH. And using our automatic optimizer or learning a very little bit of assembly language makes your addition zip along as well as in the parent language.
Speaking of assembly language, learning it in a supportive Forth environment turns the learning curve into a light speed escalator. People who failed previous attempts to use assembly language, conquer it in a few hours or days using HS/FORTH.
HS/FORTH runs under MSDOS or PCDOS, or from ROM. Each level includes all features of lower ones. Level upgrades: $25. plus price difference between levels. Sources code is in ordinary ASCII text files.
All HS/FORTH systems support full megabyte or larger programs & data, and run faster than any 64k limited ones even without automatic optimization -- which accepts almost anything and accelerates to near assembly language speed. Optimizer, assembler, and tools can load transiently. Resize segments, redefine words, eliminate headers without recompiling. Compile 79 and 83 Standard plus F83 programs.
STUDENT LEVEL $145.
text & scaled/clipped graphics in bit blit windows,mono,cga,ega,vga, fast ellipses, splines, bezier curves, arcs, fills, turtles; powerful parsing, formatting, file and device I/O; shells; interrupt handlers; call high level Forth from interrupts; single step trace, decompiler; music; compile 40,000 lines per minute, stacks; file search paths; formats into strings.
PERSONAL LEVEL $245. software floating point, trig, transcendental, 18 digit integer & scaled integer math; vars: A B * IS C compiles to 4 words, 1..4 dimension var arrays; automatic optimizer-machine code speed.
PROFESSIONAL LEVEL $395. hardware floating point - data structures for aU data types from simple thru complex 4D var arrays - operations complete thru complex hyperbolics; turnkey, seal; interactive dynamic linker for foreign subroutine libraries; round robin & interrupt driven multitaskers; dynamic string manager; file blocks, sector mapped blocks; x86&7 assemblers.
PRODUCTION LEVEL $495. Metacompiler: DOS/ROM/direct/indirect; threaded systems start at 200 bytes. Forth cores at 2 kbytes; C data structures & struct+ compiler; TurboWindow-C MetaGraphics library, 200 graphic/window functions, PostScript style line attributes & fonts, viewports.
PROFESSIONAL and PRODUCTION LEVEL EXTENSIONS:
FOOPS+ with multiple inheritance $ 75. 286FORTH or 386FORTH $295.
16 Megabyte physical address space or gigabyte virtual for programs and data; DOS & BIOS fully and freely available; 32 bit address/operand range with 386.
BTRIEVE for HS/FORTH (Novell) $199.
ROMULUS HS/FORTH from ROM$ 95.
FFORTRAN translator/mathpak $ 75. Compile Fortran subroutines! Formulas, logic, do loops, arrays; matrix math, FFT, linear equations, random numbers.
Volume XII, Number 4
15
Forth Dimensions
EXTENDED-PRECISION MATH
MADE EASY
DOUGLAS ROSS - GREENBELT, MARYLAND
I
n order to do extended-precision math easily, it is necessary to keep track of the carry that is generated when two cells are added or subtracted. This carry must then be applied to the next level of precision for the subsequent partial word length operations.
Though it is possible to do extendedprecision math by synthesizing carries using double-word operators, that approach is cumbersome. Italso produces code that is not intuitively obvious to understand and which runs much more slowly than necessary.
Your extendedprecision math will be greatly enhanced.
The capability of doing extended-precision math can be greatly enhanced with the inclusion of six simple words into your Forth. These words can added to any Forth system with minimal effort. However, their use will greatly enhance the capability to produce extended-precision math operators that are easy to understand, and that are much faster in their operation than those created by other approaches.
Getting Carried Away
One of the key features of Forth is the ability it allows the programmer to get at the "machine" more directly than any language except assembly language. However, one glaring omission in Forth is its inability to allow the programmer to directly get at the carry in high-level Forth.
: D+ (al ah bl bh — 1 h) >R SWAP >R CLRC +c R> R> +c ;
: D- (al ah bl bh — 1 h) >R SWAP >R SETC -c R> R> -c ;
Figure One. New definitions for D-i- and D-.
T+ (al am ah bl bm bh — 1 m h) CLRC >R >R SWAP >R SWAP >R +c R> R> R> SWAP >R +c R> R> +c ;
T- (al am ah bl bm bh — 1 m h) SETC >R >R SWAP >R SWAP >R -c R> R> R> SWAP >R -c R> R> -c ;
Figure Two. These words perform a(l,m,h) +/- b(l,m,h) with carry/borrow.
T+ (al am ah bl bm bh — 1 m h) >R >R SWAP >R SWAP >R 0 SWAP 0 D+
0 R> R> D+ R> R> D+ ;
T- { al am ah bl bm bh — 1 m h) >R >R SWAP >R SWAP >R 0 SWAP 0 D
DUP R> R> D+ R> R> D- ;
Figure Three. Definitions for T+ and T- using standard Forth words.
Forth Dimensions
16
Volume XII, Number 4
With minimal alterations to the kernel, a Forth-level access to the carry can be acquired, which will greatly enhance programming efficiency for producing extended-precision math operators. Only six words need to be added to the kernel to do this. They all involve direct manipulation of the carry.
These words are:
SETC "set-c"
(--)
The carry is set to a value of one.
CLRC "Clear-c" (--)
The carry is set to a value of zero.
+c "plus-c"
(nl n2 - n3)
Add n2 and the carry to n 1, giving the sum n3. The resulting carry is preserved in the carry bit.
-c "minus-c"
(nl n2 - n3)
Subtract n2 and the carry from n 1, giving the difference n3. The resulting borrow is preserved in the carry bit.
2*c "two-star-c" (nl - n2)
n2 is nl shifted left one bit, with the carry going into the LSB, and the MSB going into the carry (circular left shift).
c2/ "c-two-slash" (nl - n2)
n2 is nl shifted right one bit, with the carry going into the MSB, and the LSB going into the carry (circular right shift).
With these six words, extended-precision math operators can now be easily created—in high-level Forth—that are intuitive to understand and fast in operation.
SIZE ARRAY TEMP \ make TEMP array of SIZE cells
N+ (numl num2 #cells — num3 [tcells long])
CLRC
DUP >R
0 DO R@ 0 DO 0 0 R> - DO
TEMP I + ! LOOP TEMP SIZE 2/ I + + 0 I - 1
TEMP OVER SIZE 2/ + + @ SWAP TEMP + @ +c LOOP ;
\ clear carry, store #cells \ store nuni2 in TEMP ! LOOP \ store numl in TEMP
\ compute array index val \ retrieve numl(i) cell \ retrieve num2(i) cell \ -c for N
Figure Four. Arbitrary-precision math operators.
	: UDM+ (ual uah ubl ubh —- 1 m h) (CLRC >R SWAP >R +c R> R> +c 0 0 +c ;
	unsigned)

	: DM+ (al ah bl bh ~ 1 m h) (CLRC >R SWAP >R +c R> DUP R@ +c SWAP 0< R> 0< +c ;
	signed)

	: T+UD (al am ah ubl ubh — 1 m h) (CLRC >R SWAP >R SWAP >R +c R> R> R> SWAP R> +c R> 0 +c ;
	b is unsigned)

	: T-UD (al am ah ubl ubh — 1 m h) (SETC >R SWAP >R SWAP >R -c R> R> R> SWAP >R -c R> 0 -c ;
	b is unsigned)

	Figure Five. Extended-precision, mixed-math operators.
	

	: T2* (al am ah — 1 m h) CLRC >R >R 2*c R> 2*c R> 2*c ;
	

	This is much faster than: : T2* (al am ah — 1 m h) 3DUP T+ ;
	

	Figure Six. Extended-precision shift operators.
	

Modifying the Kernel
As stated previously, Forth doesn't keep track of the carry that is generated when you add or subtract cells. The definition of "carry" is meant to distinguish the value which is associated with the operation of the Forth words, not the operations associated with an inner interpreter. The "carry bit" is the location the system uses to
Volume XII, Number 4
17
Forth Dimensions
: UT2/ (al am ah — 1 m h)
CLRC c2/ >R c2/ >R c2/ R> R>
: T2/ (al am ah — 1 m h) DUP 2*c DROP
c2/ >R c2/ >R c2/ R> R>
(logical shift right)
(arithmetic shift right) (sign bit in c)
Figure Seven. Right-shift extended-precision operators.
T2N* (al am ah count — 1 m h) CLRC
0 DO >R >R 2*c R> 2*c R> 2*c LOOP ;
T2N* (t # — t) CLRC 1
FOR >R >R 2*c R> 2*c R> 2*c
NEXT ;
Figure Eight. Multiple-shift, extended-precision operators.
	Statement of Ownership
	•

	Management and Circulation

	1) Title of Publication: Forth Dimensions
	

	Publication Number U.S.P.S. 002-191
	

	2) Date of Filing: 9/5/90
	

	3) Frequency of Issue: Bi-Monthly
	

	No. of issues published annually: 6
	

	Annual subscription price: $24/36
	

	4) Location of known office of publication: 1330 S Bascom Ave., Suite D, San Jose, Santa Clara County, California 9512S-4502

	5) Location of the headquarters or general business offices of the publisher: Same as above

	6) Publisher Forth Interest Group, P.O. Bo.\ 8231, San Jose, California, 95155

	Editor Marlin Ouverson, Same as above
	

	Business Manager Georgiana F. Shepherd. Same as above

	7) Owner Forth Interest Group, Same as abcwe
	

	8) Known bondholders, mortgagees, and other security holders owning or holding

	1% or more total amount of bonds, mortages and other securities: none

	9) The purpose, function and non-profit status of this organization and the exempt status for Federal Income Tax purposes have

	not changed during the preceding 12 monttis.
	

	10) Extent and nature of circulation
	Average No. copies/issue Actual No. Copies

	
	during preceding 12 mos. of single issue

	
	nearest to filing

	
	date

	A. Total no. copies printed:
	B50 2200

	B. Paid/requested circulation:
	

	1. Sales:
	8 10

	2. Mail subscription:
	1880 1659

	C. Total paid/requested circulation:
	1888 16f©

	D. Free distribution by mail, carrier
	

	or other means: samples, complimenlary
	

	and other free copies:
	36 91

	E. Total distribution:
	1924 1760

	F. Copies not distributed:
	

	1. Office use, left over, unaccounted.
	

	spoiled after printing:
	426 440

	2. Return form news agents:
	0 0

	G. TOTAL:
	2350 2200

	U) I certify that the statements made by me above are correct and complete

	/s/ Georgiana F. Shepherd
	

store the carry, and isn't necessarily the location defined in the ALU (arithmetic logic unit) operation of machine-level instructions.
Therefore, you must create the mechanism to store the carry that is created by the machine's ALU when the Forth words + and - are used. In the ideal world, the definition of + and - would be altered to provide for the ALU-generated carry to be stored in a system variable I will name CARRY. This can easily be obtained from the machine's status register or directly from the ALU instructions themselves.
However, in order not to "bust" existing kernels and the words + and -, an alternative structure is preferable. First, create a variable or memory (register) location that will be used for storing the machine-level carry. Then write the carry-manipulation words in assembly, utilizing the CARRY memory location to preserve the machinelevel operation carry.
This is necessary because the inner interpreter for non-Forth engines will most likely utilize ALU instructions which change the ALU carry value. Therefore, the state of the carry must be preserved before exiting those Forth words. On Forth engines such as the RTX 20xx family and the APL chip (SC32) the inner interpreter is hardware, so the carry is preserved in a hardware register and can be directly accessed by high-level Forth words.
Extended-Precision Math Made Easy
Now that I've explained how to gain access to the carry, let's use these new words to produce extended-precision math operators.
Normally, D+ and D- are defined in machine language. With the addition of these new words, they can now be defined as in Figure One; that was easy enough. For something harder, see Figure Two. Next, let's see how we would produce T+ and Tusing standard Forth words (Figure Three).
Although both versions of these words take comparable code space, the words in Figure Two should run faster than those in Figure Three (D+ and D- should be slower than +c and -c). The words in Figure Two also have an intuitive symmetry that isn't present in Figure Three. After stack thrashing, the words in Figure Two simply perform a(l,m,h) +/- b(l,m,h) with carry/bor
(Continued on page 40.)
Forth Dimensions
18
Volume XII, Number 4
Twelfth Annual
FORML CONFERENCE
The original technical conference for professional Forth programmers, managers, vendors, and users.
Following Thanksgiving, November 23-25, 1990
Asilomar Conference Center Monterey Peninsula overlooking the Pacific Ocean Pacific Grove, California U.S.A.
Conference Theme: Forth in Industry
Papers are invited that address relevant issues in the development and use of Forth in industry. Papers about other Forth topics are also welcome.
Mail abstract(s) of approximately 100 words by October 1,1990 to FORML, P.O. Box I 8231, San Jose, CA 95155.
Completed papers are due November 1,1990.
Conference Registration
Registration fee for conference attendees includes conference registration, coffee breaks, and notebook of papers submitted, and for everyone rooms Friday and Saturday, all meals including lunch FriI day through lunch Sunday, wine and cheese parties Friday and Saturday nights, and use of Asilomar facilities.
Conference attendee in double room—$285 • Non-conference guest in same room—$160 • Children under 17 in same room—$120 • Infants under 2 years old in same room—free • Conference attendee in single room—$360
Register by calling the Forth Interest Group business office at (408) 277-0668 or writing to: FORML Conference, Forth Interest Group, P.O. Box 8231, San Jose, CA 95155.
About Asilomar
The Asilomar Conference Center combines excellent meeting and comfortable living accommodations, It is situated on the tip of the Monterey Peninsula overlooking the Pacific Ocean. Asilomar is part of the California State Park system; it occupies 105 secluded acres of forest and dune. If you like, you may jog on the beach before breakfast, join an informal discussion under a cypress tree after lunch, and exchange stories in front of a fireplace at the nightly wine and cheese parties. Guests of conference attendees may enjoy sightseeing along the beautiful Big Sur coast, visiting the new Monterey Aquarium, or shopping in nearby Carmel.
Volume XII, Number 4
19
Forth Dimensions
F83
FORTH AND THE
THREE-NUMBER
PROBLEM
LEONARD MORGENSTERN - MORAGA, CALIFORNIA
^^ars ago, before spreadsheets were invented, I had a problem: enter numbers at the keyboard, and have the computer display an answer. To accomplish this, I wrote a Forth word X to perform the calculation. Now, I could have my result by typing X at the end of each line. This worked fine, except that I developed a hatred for the letter X, and wondered if I could somehow make the action occur automatically as soon as the return key was pressed. Since then, I have discovered several ways, which I present here. To simplify the discussion, the problem will be reduced to the following, which I call the "three-number problem." The user enters three numbers and presses the return key. The computer displays their sum.
A programmer working in BASIC would use a direct approach: accept data into a buffer and analyze it. An experienced Forth programmer would recognize that this is exactly the sequence employed by Forth's outer interpreter, which is the sequence that gets input and converts it into Forth actions, and would make the appropriate modifications. Few other languages allow such freedom to tinker with their innards.
To simplify the discussion, the problem will be reduced to the following: The user enters three numbers and presses the return key. The computer displays their sum. This is the "three-number problem."
Copying BASIC'S Approach
BASIC would solve the three-number problem by using built-in features of that language. A named area in memory, called a string, is defined, and the following fourstep sequence repeated:
1. Get keyboard input into the string.
2. Scan the string for separators, and divide it into segments.
3. Convert the string's segments to numbers.
4. Calculate the sum and display it.
A fairly direct translation of the BASIC method into Forth is presented in Screen Two and is documented in Figure One. GET INPUT stores keyboard input in the buffer WORKAREA. -LEADING and LEX find the segments. NUMBER? performs the conversion.
The Forth Approach
Although there are differences in detail, the mechanism used by the BASIC approach is the same as that used by Forth's outer interpreter, which gets and interprets keyboard input. It turns out to be easy to insert a new action in it This possibiHty might not occur to a programmer familiar only with conventional computer languages.
We do not program in Forth, rather, we program Forth...
The outer interpreter is called QUIT, so named because, when it is executed, it clears the data and return stacks, and awaits keyboard input. In effect. Forth "quits" what it is doing and starts over. (A more descriptive name would be RESTART.) I still remember how surprised I was to learn that QUIT is a colon definition, which anyone can modify, cautiously, I had expected to find it in the nameless stuff at the bottom
of Forth, hidden from any but the expert eye. All quits work in basically the same way, but the word is too implementationdependent to be copied directly from one Forth to another. F83 defines it as follows:
: QUIT (—) QUIT is a colon definition.
SPO @ 'TIB !
BLK OFF [COMPILE] [
Housekeeping. Reset TIB, set input to keyboard, and turn off compilation.
BEGIN
Start a BEGIN ... again structure, which is an endless loop. It is not possible to terminate it in a "normal" way. The program can escape by 1) executing BYE to exit from Forth altogether, 2) executing QUIT explicitly, which starts the loop over again, or 3) executing ABORT or one of its variants which execute QUIT implicitly.
RPO @ RP!
More housekeeping. Reset return stack.
STATUS
A deferred word, created by the defining word DEFER. Such a word has a slight resemblance to a variable, but differs in two respects: 1) It always contains the CFA of another Forth word, and 2) it executes that word instead of putting an address on the stack. To change the contents of a deferred word, use TO or IS, depending on your particular Forth. The default action of STATUS is CR, which starts a new line. (Try typing ' NOOP IS STATUS to see what happens.) The name implies that it should be used to show the status of the system—for example, by displaying certain variables—^but it is far more versatile than
Forth Dimensions
20
Volume XII, Number 4
that. In Screen Three, it adds the three top numbers on the stack and exhibits the sum.
QUERY
Get 80 characters from the keyboard into TIB (Terminal Input Buffer).
RUN
Analyze the contents of TIB and execute each word in turn. F83 uses RUN instead of the standard interpret, because F83's version of the latter does not permit multiline compilation.
STATE @ NOT IF ." ok" THEN
STATE is a variable that contains false if interpreting (for example, when executing keyboard input) and TRUE if compiling (when in a colon definition). If the former, issue the "ok" prompt. In the three-number problem, the prompt is an annoyance. To ; suppress it, you could patch the letters ok to spaces or something equally unobtrusive; but it is easier to write a new QUIT, as we will do in Screen Four. In some Forths, the "ok" prompt is deferred, and if you ever metacompileForth, you should incorporate this feature. It would add a lot of flexibility—for example, the prompt might display something more informative than "ok," or you could solve the three-number problem without rewriting the QUIT loop. (I leave this as an exercise.)
AGAIN ;
End the loop and start over.
F83 has incorporated a deferred word, S T ATUS, into QUIT, providing an easy but limited way to make a change by simply assigning a new action. This is done in Screen Three, where ADD 3 is the summation command. It checks the depth of the stack against a variable named DEPTH*. If there are three numbers present, they are added. If not, an error is signalled. The process is started by executing ADD ' EM, which sets depth* and modifies STATUS. RESTORE reverts to normal.
Writing a New QUIT Loop
Up to now, we have modified QUIT in a very limited way, by tinkering with STATUS. In Screen Foiu" we will go all the way and write a new version of QUIT, named SUM' em. It omits STATUS and the "ok" prompt. Compare it with QUIT, and
note how the housekeeping has been meticulously copied. Also note its minute size, 51 bytes. Writing your own interpreter is not only easy, it is cheap!
To start summing, simply type SUM'EM. To exit, type QUIT. An error, such as an illegal Forth word or insufficient stack depth, will also exit While SUM' em is executing, input is interpreted actively, not passively. Any Forth word entered at the console is executed in a normal way. For example, if we type 3 3 * 4 5 <cr>, SUM'EM would understand the * as a command to multiply, and 18 would be displayed. By contrast, B ASIC-style action would regard the * as an error, since it is not a number.
Although setting up a new outer interpreter is not terribly complicated, keep in mind that QUIT is the heart of Forth, and changing it is cardiac surgery. Do it carefully! Any mistake, and your system will hang up—if you are lucky. In particular, do not touch the housekeeping. Altering that is equivalent to writing your own Forth.
Forth vs. Traditional Computer Languages
This example teaches several lessons about computer languages in general and Forth in particular. BASIC is a "traditional" language, a class that includes Pascal, Fortran, and C. It has three levels: assembler, language, and application, all sharply separated from one another. We say that an application is "written" in the language. Only an expert can change the language itself, according to the tacit principle that providing access to the computer is only the secondary purpose of a language; the primary is protecting the computer from the user.
By contrast, these levels do not exist in Forth, and you can do as much damage as you wish. CODE words are often called "low-level" and colon definitions "highlevel," but the fact is that, once defined, they are all at the same level. A CODE word and a colon definition with the same action are indistinguishable without decompiling them, except that CODE definitions usually run faster. Furthermore, we do not program in Forth, rather, we program Forth, by modifying and extending it to suit our needs. For expert users, we might create a large number of powerful, specialized words, and for ordinary users a small English-like subset.

 [image: Picture #2]

 NGS FORTH
A FAST FORTH, OPTIMIZED FOR THE IBM PERSONAL COMPUTER AND MS-DOS COMPATIBLES,
STl^ARD FEATURES INCLUDE!
•79 STANDARD
•DIRECT I/O ACCESS
•FULL ACCESS TO MS-DOS FILES AND FUNCTIONS
•ENVIRONMENT SAVE & LOAD
•MULTI-SEGMENTED FOR LARGE APPLICATIONS
•EXTENDED ADDRESSING
•MEMORY ALLOCATION CONFIGURABLE ON-LINE
•AUTO LOAD SCREEN BOOT
•LINE & SCREEN EDITORS
•DECOMPILER AND DEBUGGING AIDS
•8088 ASSEMBLER
•GRAPHICS & SOUND
•NGS ENHANCEMENTS
•DETAILED MANUAL
•INEXPENSIVE UPGRADES
•NGS USER NEWSLETTER
A COMPLETE FORTH DEVELOPMENT SYSTEM.
PRICES START AT $70
NEW^HP-ISO & HP-110 VERSIONS AVAILABLE
m
NEXT GENERATION SYSTEMS P.O.BOX 2987 SANTA CLARA, OA. 95055 (408) 241-5909
Volume XII, Number 4
21
Forth Dimensions
Conventional-language programmers find it hard to visualize such a language. To them, it is just another evidence of Forth's "weirdness." Two incidents from my own experience illustrate the problem. I was explaining to a relative, a man with a giant I.Q. and a lot of programming experience, how flexible Forth is. The conversation went like this:
Leonard:
HW:
Leonard:
HW: Leonard:
In Forth, you could redefine + to subtract instead of add. You can do that in Pascal. Just define a function. (After vain attempts to explain the difference) If I write a:= 3 + 4 what is the value of al Seven.
No, it's -1. Remember, we changed + to -.
The following exchange occurred at an Asilomar conference:
Speaker #1: Forth is not a computer language. It is a way to program a computer. BASIC is a computer language.
Speaker #2: No, Forth is a computer language, and BASIC is not.
I think the second was right. Forth is like a natural language, such as English. Conventional computer languages are more like cable code, full of arbitrary phrases such as "AZCEG Yourmessage received."
Summary
Problems are sometimes solved in Forth at deeper levels than is possible in a conventional languages such as BASIC.
Leonard Morgenstern is a retired pathologist and computer hobbyist. His interest in Forth goes back over ten years. Currently, he is a sysop of the Forth RoundTable on the GEnie network.
Screen 2
\ Add figures BASIC-style 1 — a' 1'
NLM900525
)
)
: -LEADING (a BL SKIP ;
: GETINPUT (a 1 — OVER 1+ SWAP EXPECT SPAN @ SWAP 2DUP C! + 1+ BL SWAP C! /
: LEX (alb — a[tail] l[tail] a[head] 1[head])
>R 2DUP R> SCAN DUP >R 2SWAP R> - ;
CREATE WORKAREA 82 ALLOT
: ADD'EM (—)
WORKAREA DUP 7 9 GETINPUT COUNT
BEGIN -LEADING DUP 0<> WHILE BL LEX DROP 1- NUMBER? NOT IF BEEP THEN 2SWAP REPEAT 2DR0P D+ D+ 3 SPACES D.
\ 261 bytes
NLM900525
Screen 3
\Add figures using STATUS VARIABLE DEPTH*
ADD3 DEPTH DEPTH* @ - 3 >= IF 2 SPACES + + .THEN CR RESTORE [•] CR IS STATUS ;
ADD'EM ['] ADD3 IS STATUS DEPTH DEPTH* ! ; \ 10 9 bytes
Screen 4
\ Add figures with QUIT loop NLM900525 : SUM'EM SPO @ 'TIB ! BLK OFF [COMPILE] [
BEGIN RPO @ RP! QUERY RUN
+ + . CR AGAIN ; \ 51 bytes
(Figure on page 31.)
Forth Dimensions
22
Volume XII, Number 4
FIG
MAIL ORDER FORM
MEMBERSHIP IN THE FORTH INTEREST GROUP
112 > MEMBERSHIP in the FORTH INTEREST GROUP and Volume 12 (May/June '90 - March/April '91) of Forth Dimensions. No sales tax, handling fee, or discount on membership. See back page of this order form.
The Forth Interest Group is a world-wide, non-profit, member-supported organization with over 2,000 members and 55 chapters. FIG membership includes a subscription to the bi-monthly magazine, Forth Dimensions. FIG also offers its members an on-line data base, a large selection of Forth literature and many other services. Cost is $30.00 per year for USA & Canada surface mail; $36.00 Canada air mail; all other countries $42.00 per year. Annual membership dues are based on the membership year, from May 1 to April 30.
When you join, you will receive issues that have already been circulated for the current volume of Forth Dimensions, and subsequent issues will be mailed to you as they are published. You will also receive a membership card and number which entitles you to a 10% discount on publications from FIG. Your member number will be required to receive the discount, so keep it handy.
Dues are not deductable as a charitable contribution for U.S. federal income tax purposes, but may be deductable as a business expense where applicable.
HOWTO USE THIS FORM
Most items list three different price catagories:
USA, Canada and Mexico / Other countries Surface Mail / Other countries Air Mail Note: Where only two prices are listed. Surface Mail is not available. Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
FORTH DIMENSIONS BACK VOLUMES
The six issues of the volume year (May-April)
	101
	-Vol.1
	FORTH
	Dimensions
	(1979/80)
	$15/16/18

	102
	-Vol.2
	FORTH
	Dimensions
	(1980/81)
	$15/16/18

	103
	-Vol.3
	FORTH
	Dimensions
	(1981/82)
	$15/16/18

	104
	-Vol.4
	FORTH
	Dimensions
	(1982/83)
	$15/16/18

	105
	-Vol.5
	FORTH
	Dimensions
	(1983/84)
	$15/16/18

	106
	-Vol.6
	FORTH
	Dimensions
	(1984/85)
	$15/16/18

	107
	-Vol.7
	FORTH
	Dimensions
	(1985/86)
	$20/22/25

	108
	-Vol.8
	FORTH
	Dimensions
	(1986/87)
	$20/22/25

	109
	-Vol.9
	FORTH
	Dimensions
	(1987/88)
	$20/22/25

	110
	-Vol.10
	FORTH
	Dimensions
	(1988/89)
	$20/22/25

	111
	-Vol.11
	FORTH
	Dimensions
	(1989/90)
	$20/22/25

FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an informal forum for sharing and discussing new or unproven proposals intended to benefit Forth. Proceedings are a compilation of papers and abstracts presented at the annual conference. FORML is part of the Forth Interest Group.
310 - FORML PROCEEDINGS 1980 $30/31/40
Technical papers on the Forth language and extensions.
311 - FORML PROCEEDINGS 1981 $45/48/55
Nucleus, interactive, and extensible layers; metacompilation, system development, file systems, other languages and operating systems; applications.
312 - FORML PROCEEDINGS 1982 $30/31/40
Forth machine topics, implementation topics, vectored execution, system development, file systems and languages, applications.
313 - FORML PROCEEDINGS 1983 $30/32/40
Forth in hardware. Forth implementations, future stratgy, arithmetic and floating point, file systems, coding conventions, functional programming.
314 - FORML PROCEEDINGS 1984 $30/33/40
Expert Forth systems, philosophy, implementing Forth systems, new Forth directions, interfacing Forth to operating systems, adding local variables.
316 - FORML PROCEEDINGS 1986 $30/32/40
Forth internals. Methods, Standards, Forth processors, Artificial Intelligence, Applications.
317 - FORML PROCEEDINGS 1987 $40/43/50
Includes papers from '87 euroFORML Conference. 32 bit FORTH, neural networks, control structures, AI, optimizing compilers, hypertext and more.
318 - FORML PROCEEDINGS 1988 $24/25/34
Human interfaces, Simple Robotics Kernel System, MODUL Forth, Language topics, hardware, Wil's workings &Ting's philosophy, Forth hardware applications, ANS Forth session. Future of Forth in AI Applications.
380 - AUSTRALIAN PROCEEDINGS 1988 $24/25/34
Proceedings from the first Australian Forth Symposium held May, 1988 at the University of Technology in Sydney. Subjects include training, parallel processing, programmable controllers, Prolog in Forth, simulations & applications.
319 - FORML PROCEEDINGS 1989 $40/43/50
Includes papers from '89 euroFORML. PASCAL to Forth, extensible optimizer for compiling, 3-D measurement using object-oriented Forth, CRC polynomials, Harris C cross-compiler, modular approach to robotic control, RTX recompiler for on-line maintenance, module, trainable neural nets.
BOOKS ABOUT FORTH
200 - ALL ABOUT FORTH, 2nd ed., March 1983 $28/29/38
Glen B. Haydon
An annotated glossary for MVP Forth: a 79-Standard Forth.
201 - ALL ABOUT FORTH, 3rd ed., June 1990 $90/92/105
Glen B. Haydon
An annotated glossary of most Forth words in common usage, including F-79, F-83, F-PC, MVP-Forth. Implementation examples in high-level Forth and/ or 8086/88 assembler. Useful commentary is given for each entry.
210 - THE COMPLETE FORTH $14/15/19
Alan Winfield
A comprehensive introduction including problems with answers (Forth79)
217 - F83 SOURCE $20/21/30
Henry Laxen & Michael Perry
A complete listing of F83 including source and shadow screens. Includes introduction on getting started.
218 - FOOTSTEPS IN AN EMPTY VALLEY $25/26/35
Dr.CH. Ting
A thorough examination and explanation of the NC4000 Forth chip including the complete source to cmForth from Charles Moore.
219 - FORTH: A TEXT AND REFERENCE $28/29/38
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth with comprehensive references to MMSFORTH and the 79 and 83 Forth Standards.
220 - FORTH ENCYCLOPEDLA $30/32/40
Mitch Derick & Linda Baker
A detailed look at each fig-FORTH instruction.
232 - FORTH NOTEBOOK $25/26/35
Dr.CH.Ting
Good examples and applications. Great learning aid. PolyFORTH is the dialect used. Some conversion advice is included. Code is well documented.
232a - FORTH NOTEBOOK II $25/26/35
Dr. C. H. Ting
Collection of research papers on various topics as image processing, parallel processing and miscellaneous applications.
235 - INSIDE F-83 $25/26/35
Dr.CHTing
Invaluable for those using F-83.
237 - LIBRARY OF FORTH ROUTINES AND UTILITIES
James D. Terry $23/25/35
Comprehensive collection of professional quality computer code for Forth; offers routines that can be put to use in almost any Forth application, includng expert systems and natural language interfaces.
240 - MASTERING FORTH, 2nd Edition $22/23/28
Anita Anderson & Martin Tracy
A step-by-step tutorial including each of the commands of the Forth-83 International Standard; with utilities, extensions and numerous examples.
242 - OBJECT ORIENTED FORTH $25/26/30
Dick Fountain
Implementation of Data Structures. First book to make object orientated programming available to users of even very small home computers.
244 - STACK COMPUTERS, THE NEW WAVE $62/65/72
Philip J. Koopman, Jr.
Presents an alternative to Complex Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC) by showing the strengths and weaknesses of stack machines, (hard cover only)
245 - STARTING FORTH, 2nd Edition (soft cover)
Leo Brodie $29/30/38
In this edition of Starting Forth, the most popular and complete introduction to Forth, syntax has been expanded to include the new Forth '83 Standard.
267-TOOLBOOK OF FORTH $23/25/35
(Dr.Dobb's) Eidited by Marlin Ouverson
Expanded and revised versions of the best Forth articles collected in the pages of Dr.Dobb's Journal.
267a - TOOLBOOK, V.l & DISK (MS-DOS) $40/42/50
268 - TOOLBOOK OF FORTH, V.2 $30/32/40
(Dr. Dobbs)
Complete anthology of FORTH programminmg techniques and developments, picks up where V.l left off. Topics include programming windows, extended control structures, design of a FORTH target compiler and more.
268a - TOOLBOOK, V.2 & DISK (MS-DOS) $46/48/56
268b - TOOLBOOK, V.2 & DISK (MAC) $46/48/56
DR. DOBB'S JOURNAL
Annual Forth issue, includes code for various Forth applications.
$6/7/9_
902 - Volume 1#3, Fall 1989 RCA 1802 software simulator, tutorial on multiple threaded vocabularies.
903 - Volume 1#4, Winter 1989 $6/7/9
$5/6/7
422 - Sept, 1982
423 - Sept, 1983
424 - Sept, 1984
SnJCON COMPOSERS PRODUCT MANUALS
1110 - SC/FOX PCS USER MANUAL $35/38/45
Silicon Composers' plug-in RTX2000 parallel coporcessor for PC/AT/386. Manual includes operation; hardware & PC interface description; RTX2000 architecture and instruction set; & FCompiler optimizing Forth compiler glossaries for the RTX2000. SC/Forth is also available for this board.
1112-SC/FORTH USER MANUAL $35/38/45
Users manual for Silicon Composers Forth, a time-sliced multitasking 83Standard Forth with exceptions for the RTX2000 chip. Manual includes complete word set glossary; description of SC/Forth internals; multitasking and turnkey application examples; and block/text file support options.
ACM-SIGFORTH
The ACM SIGForth Newsletter is published quarterly by the Association of Computing Machinery, Inc. SIGForth's focus is on the development & refinement of concepts, methods and techniques needed by Forth professionals.
901 - Volume 1, Summer 1989 $6/7/9
Metacompiler in cmForth, Forth exception handler, string case state-ment for UF/Forth.
Stack frames in Forth, duals: an alternative to variables, PocketForth.
931 - SIGForth Workshop Proceedings 1989 $20/21/26
(Software Engineering)
Multi-tasking, interrupt driven systems, object oriented Forth, error recovery & control, virtual memory support, signal processing.
ROCHESTER PROCEEDINGS
The Institute for Applied Forth Research, Inc. is a non-profit organization which supports and promotes the application of Forth. It sponsors the annual Rochester Forth Conference.
321 - ROCHESTER 1981 $25/28/35
(Standards Conference)
322 - ROCHESTER 1982 $25/28/35
(Data bases & Process Control)
323 - ROCHESTER 1983 $25/28/35
(Forth Applications)
325 - ROCHESTER 1985 $20/21/25
(Software Management & Engineering)
Improving software productivity, using Forth in a space shuttle experiment, automation of an airport, development of MAGIC/L and a Forth based business applications language.
326 - ROCHESTER 1986 $20/21/25
(Real-Time Artificial Intellegence)
Object-oriented programming, software tools, implementations, space applications, process monitoring, HHC, and mathematics.
327 - ROCHESTER 1987 $20/21/25
(Comparative Computer Architectures)
Multi-Stack Forth machines, parallel processing, biological computing, and VLSI implementations.
328 - ROCHESTER 1988 $25/26/33
(Programming Environments)
Operating systems and languages, UNIX, TICOL, X-Script, RPL (Reverse Polish Lisp), RTX, Wise, NC4000.
329 - ROCHESTER 1989 $25/26/33
(Industrial Automation)
Embedded systems, object oriented programming, 32bit SC32 and Harris RTX 2000 and 4000 processors, image processing.
JOURNAL OF FORTH APPLICATION & RESEARCH Refereed technical journal published by the Inst, for Applied Forth Research. 401 404 405 406 407 409 410 411 412 413 414 415 416 417
Volume 1, Robotics/Data Structures Volume 2#2, Real-Time Systems Volume 2#3, Enhancing Forth Volume 2#4, Extended Addressing Volume 3#1, Forth-based Lab Systems Volume 3#3, Application Languages
• Volume 3#4, Applications, Arithmatic
• Volume 4#1, Expert Systems in Forth
• Volume 4#3, REPTIL
■ Volume 4#4, Embedding Languages in Forth
• Volume 5#2, Mathematics, ANS Standard
■ Volume 5#3, From Russia with Forth
■ Volume 5#4, Forth Processors, Parallel Forth
■ Volume 6#1, Harris RTX2000, Scientific Prog.
$30/31/38_ $15/16/18 $15/16/18' $15/16/18' $15/16/18 $15/16/18 $15/16/18 $15/16/18 $15/16/18 $15/16/18 $15/16/18 $15/16/18 $15/16/18 $15/16/18
Odds & Ends
DIOO - Forth Fundamentals V2 C. Kevin McCabe
Language Glossary, fig-Forth and Forth 79. D200 - Starting Forth Leo Brodie
First edition, 1981 (hard cover)
MISCELLANEOUS
601 - T-SHIRT SIZE
$10/11/15_ $23/25/32_
_Small, Medium, Large, Extra-Large
"May the Forth Be With You"
White design on a dark blue shirt. $12/13/15 602 - POSTER (BYTE Cover) $5/6/7 _
683 - FORTH-83 HANDY REFERENCE CARD FREE
FIG DISK LIBRARY
"Contributions from the Forth Community" are author submitted donations,generallysource, foravarietyof computers on their respective disk formats. The cost is $6/9 per disk "(1)" or $25/28 for five. The files usage is determined by the author as Public Domain, Shareware, or use with some restrictions. This library does not contain "For Sale" applications.
To submit your "Contributions", request a Submission form from the FIG office.
COOl (1) - FLOAT4th.BLK V1.4 Robert L. Smith $6/9
Software Floating-Point for fig, Poly, 79-STD, 83-STD Forths. IEEE Short 32-bit, Four standard functions, Square Root and Log. IBM.
ClOO (1) - F83 V2.01, Mike Perry & Henry Laxen $6/9
The newest version that has been ported to a variety of machines. Editor, assembler, decompiler, meta-compiler. Source and shadow screens. Manual available separately. Base for other F83 applications. IBM, 83.
$25/28_
C200 (5) - F-PC V3.53, Tom Zimmer A full Forth system with pull-down menus, sequential files, editor forward assembler, meta-compiler, floatingpoint. Complete source and Help files. Manual for V3.5 available separately (see items 350 & 351 below). Base for other F-PC applications. Hard disk recommended. IBM, 83.
C201a (2) - F-PC TEACH, Lessons 0-5 $12/15
V2.25, J. Brown
Forth classroom on disk. First five lessons from Jack Brown of BC Institute of Technology on learning Forth. IBM, F-PC.
C202 (1) - VP-Planner Floating Point for F-PC $6/9
Vl.Ol, Jack Brown
Software floatingpoint engine behind the VP-Planner spreadsheet. 80-bit (temporary-real) routines with Transcendental Functions, NUMBER I/O support, vectors to support numeric coprosessor overlay and user NAN checking. IBM, F-PC.
C203a (3) - F-PC Graphics V4.2f, Mark Smiley $18/21
*The latest versions of a number of new graphics routines including CGA, EGA and VGA suppport, with numerous improvements over earlier versions created or supported by Mark Smiley. IBM, F-PC.
$6/9_
C300 - PocketForth: V1.4, Chris Heilman Smallest complete Forth for the Mac. Access to all Mac functions, files, graphics, floatingpoint, macros,create stand-aloneapplications and DA's. Source and manual included. MAC, based on fig & Starting Forth
$6/9_
C401 (1) - JLISP Vl.O, Nick Didkovsky LISP interpreter invoked from Amiga JForth. The nucleus of the interpreter is the result of Martin Tracy's work. It has been extended to allow the LISP interpreter to link to and execute JForth words. It can communicate with JForth's ODE (Object Development Environment). AMIGA, 83.
REFERENCE
306 - ANS X3J14 BASIS DOCUMENT $15/16/20
Current - August 1990
Workingdocument of the X3J14 ANS Forth Committee, changes frequently, but useful as a working tool.
305 - FORTH 83-STANDARD $15/16/18
Authoritative description of 83-Standard Forth. Reference, not instruction.
300 - FORTH 79-STANDARD $15/16/18
The authoritative description of 79-Standard Forth. Of historical interest.
305 - SYSTEMS GUIDE TO fig-FORTH $25/28/30
C. H. Ting - 2nd Edition, 1989
Hows and Whys of the fig-Forth Model by Bill Ragsdale, Internal structure of fig-Forth system.
340 - BIBLIOGRAPHY OF FORTH REFERENCES
3rd Edition, January 1987 $18/19/25
Over 1900 references to Forth articles throughout computer literature.
350 - F-PC USERS MANUAL, 2nd Edition, V3.5 $20/21/27
Users Manual to the public domain Forth system optimized for the IBM-PC/ XT/AT computer. A fat, fast system with many tools.
351 - F-PC TECHNICAL REFERENCE MANUAL $30/32/40
A must if you need to know the inner workings of F-PC.
MORE ON FORTH ENGINES SERIES (MORE ONNC4000) EDITOR, C.H. TING
$15/16/18
801 - VOLUME 1, JULY 1986 - FIG-Tree style forum on NC4000. Topics including bugs, products, tips, benchmarks and and Chuck Moore's teleconference.
802 - VOLUME 2, OCTOBER 1986 - NC4000 User's Group's Newsletter. Hardware enhancements, software and many utility programs.
803 - VOLUME 3, JANUARY 1987 - NC6000/5000 advanced info., QUAN, DEPTH, and CASE, DROP, PICK, floating point, A/D converters.
804 - VOLUME 4, APRIL 1987 - Chuck Moore's AppNotes 1-7, line drawing, screen editor, 32 bit Forth engine design. Fourier transform, Tiny Modula-2.
805 - VOLUME 5, JULY 1987 - Moore's AppNotes 8-15, Harris FORCE Toolbox, Fk3 parallel processing, high speed pattern generator & 32 bit Forth simulator.
806 - VOLUME6, NOVEMBER 1987- mpFORTH, MIDI interface, multiplier-accumulator, Yin-Yang, NC4000 decompiler, Harris FORCE and MISCM17.
807-VOLUME7, MARCH 1988-AT/Force technical notes, fixes forinterrupt, interface to Intel chips, cross compiler, decompiler and debugger.
808 - VOLUME 8, MAY 1988 - Eight application notes from Novix on TI switch, disk controller, PBX laser printer, memory control and interrupts.
809 - VOLUME 9, NOVEMBER 1988 - Application notes on F68HC11, Super 8, LISP kernel and parallel computing on the NC4016.
810 - VOLUME 10, JANUARY 1989 - RTX reprints from 1988 Rochester Forth Conference, object oriented cmForth, lesser Forth engines.
811 - VOLUME 11, JULY 1989- RTX Supplement to Footsteps in an Empty Valley, SC32, 32 bit Forth engine, RTX interrupts/utility.
812 - VOLUME 12, APRIL 1990 - ShBoom Chip architecture and instructions, Neural Computing Module NCM3232, pigForth, Binary Radix Sort on 80286, 68010, and RTX2000.
FORTH MODEL UBRAR Y
Model applications disks below are first releases of professionally developed Forth applications. 5 1 /4" disks are IBM MS-DOS 2.0 and up compatible with Forth-83 systems listed below. Please specify disk size when ordering Laxen/Perry F83 MasterFORTH 1.0 PolyFORTH (R) 11
LMI PC/FORTH 3.0 TaskFORTH 1.0
Macintosh 3 1/2" disks are available for MasterFORTH systems only.
701-A FORTH LIST HANDLER V.l $40/43
by Martin J. Tracy
Forth is extended with list primitives to provide a flexible high-speed environment for AI. ELISA and Winston & Horn's micro-LISP included as examples. Documentation is included on the disk.
702 - A FORTH SPREADSHEET V.2 $40/43
by Craig A. Lindley
Thismodel spreadsheet first appeared in Forth Dimensions Volume 7, issues 1 and 2. Those issues contain the documentation for this disk.
703 - AUTOMATIC STRUCFURE CIL\RTS V.3 $40/43
by Kim Harris
These tools for the analysis of large Forth programs were first presented at the 1985 FORML conference. Documentation is in the 1985 FORML Proceedings.
704 - A SIMPLE INFERENCE ENGINE V.4 $40/43
by Martin J. Tracy
Based on the Inference Engine in Winston & Horn's book of LISP; takes you from pattern variables to complete unification algorithm. Accompanied throughout with running commentary on Forth philosophy and style.
706 - THE MATH BOX V.6 $40/43
by Nathaniel Grossman
Collection of mathematical routines by the foremost author on math in Forth. Extended double precision arithmetic, a complete 32-bit, fixed-point math package and auto-ranging text graphics. Includes utilities for rapid polynomial evaluation, continued fractions and Monte Carlo factorization.
ASSEMBLY LANGUAGE SOURCE CODEUSTINGS
Listings of fig-FORTH for specific CPUs and machines with compiler security
$15/16/18
519 521523 526 527528
and variable length names.
513 - 1802/March 81
6502/September 80 6800/May 79 6809/June 80 8080/September 79 8086/88/March 81
514 515 516 517 518
■ 9900/March 81
■ APPLE II/August 81
■ IBM-PC/March 84 •PDP-ll/January80
■ VAX/October 82
■ ZSO/September 82
HISTORICAL DOCUMENTS
502 - fig-FORTH INSTALLATION MANUAL $15/16/18
Glossary model editor - we recommend you purchase this manual when purchasing the source code listing.
502 - Km PEAK PRIMER $25/26/34
One of the first institutional books on Forth. Of historical interest.
503 - USING FORTH, 2nd Edition, 1980 $15/16/18
FORTH, Inc.
P.O. BOX8231
FORTH INTEREST GROUP
SAN JOSE, CALIFORNIA 95155 (408)277-0668
(408)286-8988(FAX)
Name
Member #
Cbmpany_ Street aty
State/Prov. Country
Zip
Daytime Phone
	OFFICE USE ONLY
	

	By
	Date
	Type

	Shipped by
	
	Date

	UPS
	USPS
	XRDS

	Wt.
	
	Amt.

	BO By
	
	Date

	Wt.
	
	Amt.

	

	ITEM#
	TITLE
	QTY.
	UNIT PRICE
	TOTAL

	112
	MEMBERSHIP
	
	
	SEE BELOW

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	□ CHECK ENCLOSED (Payable to: Forth Interest Group)
□ VISA □ MasterCard
	SUB-TOTAL
	

	10% MEMBER DISCOUNT MEMBER NUMBER
	

	Card Nu Expirati(
	mber
	SUB-TOTAL
	

	Dn Date
	CALIF. RESIDENTS ADD SALES TAX
	

	
	HANDLING FEE
	$2.00

	Signature
($15.00 minimum on all VISA/MasterCard orders)
	MEMBERSHIP NEW RENEWAL $30/36/42
	

	Enclosed is $30/36/42 for 1 full years dues. This includes $24/30/36 for Forth Dimensions.
	

PAYMENT MUST ACCOMPANY ALL ORDERS
MAILORDERS Send to:
Forth Interest Group
PO Box 8231
San Jose, CA 95155
PHONE ORDERS Call 408/277-0668 to place credit card orders or for customer service. Hours: M-F, 9am - 5pm PST.
PRICES POSTAGE &
All orders must be prepaid. Prices l-tANDUNG
are subject to change without notice. Prices include
Credit card orders will be sent and shipping. A $2.00
billed at current prices. $15 minimum handling fee is
on charge orders. Checks must be in required with all
US$, drawn on a US bank. A $10 charge orders, will be added for returned checks.
SHIPPING TIME
Books in stock are shipped within seven days of receipt of the order. Please allow 4-6 weeks for out-of-stock books (deliveries in most cases will be much sooner).
SALES TAX
Deliveries to Fresno, Los Angeles, Riverside, Sacramento, San Francisco, San Mateo, Inyo, San Benito, Imperial, Monterey, Santa Barbara, San Bernardino, and Santa Cruz counties, add 6.75%. Contra Costa, San Diego, Alameda, and Santa Clara counties, add 7.25%. Other California counties, add 6.25%.
XII-4
6502
FORTH ASSEMBLER &
FREE USE OF LABELS
CHESTER H. PAGE - SILVER SPRING, MARYLAND
The
le 6502 family of processors has the \ery convenient conditional branching commands BEQ, BPL, etc. They are followed by a one-byte value of a jump to be taken, forward or backward, of up to 127 bytes. In a conventional assembler, an address label can be used; the assembler A ill convert the data to the proper jump distance. Labels are also used as destinations tor JSR and JMP commands.
This assembler has a number of advantages.
I decided that I needed a Forth assembler with all these advantages. Entering 3 LAB <name> (DLAB for "define label") creates a label; the <name> is stored in a table (using a fixed number of characters), followed by the address held in the dictionary pointer when the dlab command was entered. When a label address is needed, entering ULAB <name> (for "use label") stores the <name> in a separate table, followed by the address held by dp. At the end of the assembly procedure, end steps through the ULAB use-request table, reads each name, finds it in the defining table, and stores the required jump address at the required place or computes the jump distance and stores one byte.
This assembler has a number of advantages. Since carrying out the assembly— primarily definition of primitive words—is the execution of Forth operations, other Forth operations can be carried out, such as computing an address to be compiled. A good example is:
' NEXT 2+ JMP,
Another Forth operation that can be
ASSEMBLER SCR « 1
0 \ Using DLAB and ULAB with labels
1 HEX
2 k'OCABULARY ASSEMBLER ASSEMBLER DEFINITIONS
3 k.'ARIABLE MODE VARIABLE MODE . KEY
4 i.'ARIABLE LONG.ADDR
5 5 CONSTANT LAB.LEN
o 8E0CI CONSTANT LAB.TAB 7 S900 CONSTANT PLACE.TAB S VARIABLE LAB.PTR VARIABLE PLACE. PTR
I 0
II : CLEAR.TABLES PLACE.TAB 300 0 FILL PLACE.TAB PLACE.PTR
12 LAB.TAB LAB.PTR ' ;
13 : , HERE ' 2 ALLOT ;
14 : C, HERE C 1 ALLOT ;
15 . «1) — >
24APR89CHP
ASSEMBLER SCR *♦
0 \
24APR89CHP
	1
	CREATE
	FIND
	LAB PRIM
	04A9
	E585
	00B5
	E699
	E800 ,
	

	o
	C4CS ,
	D0E5
	, A0F5 ,
	BlOO
	D0E6
	CO 04
	FOOO
	51 IC ,
	

	3
	DOES ,
	C807
	, OOCO ,
	EF90
	1 IFO
	A518
	69E6
	8500 ,
	A5E6

	4
	69E7 ,
	8500
	, A0E7 ,
	FOOO
	CADC
	CACA
	COCA
	DOOO ,
	

	5
	980B ,
	0095
	, 0195 ,
	0295
	0395
	13F0
	OOAO
	E6B1 ,
	0295

	6
	E8B1 ,
	0095
	, B1C8 ,
	95E6
	B103
	, 95E8
	, 4C0 1
	, ' NEXT
	2+ ,

8 9 10 1 1 12 1 3 14 1 5
LAB.LEN ' FIND.LAB OVER OVER 21 + C! OVER 2+ OVER 2A + Ci 4B + C
: ULAB BL WORD DUP 1+ SWAP C3 PLACE. PTR al SWAP CMOVE LAB.LEN
PLACE.PTR +' HERE PLACE.PTR 3 I 2 PLACE.PTR +! ; : ''USED LAB.PTR 7> LAB. TAB FIND. LAB = 0= IF ." Label " LAB.PTR a 5 TYPE ." already exists" CLEAR.TABLES SP! QUIT THEN ; : DLAB BL WORD DUP 1+ SWAP C2 LAB.PTR 3 SWAP CMOVE ?USED LAB.LEN LAB.PTR +! HERE LAB.PTR 3 ! 2 LAB.PTR +! ; .(#2) —>
ASSEMBLER SCR ♦» 3
9 10 1 1 1 2 1 3
4 15
Modes ZP 0 MODE
24APR89CHP
\ ZP i : ,X 1 MODE : ,Y 2 MODE : X) 3 MODE : >Y 4 MODE : » 5 MODE : ,A 6 MODE :) 7 MODE \ 8 \ 9 \ A
CREATE ADD.TABLE
1404 , 0014 , 0810 .(ttS) —>
0 MODE.KEY ! defau1t mode
1 MODE.KEY ! 202 MODE.KEY 4 MODE.KEY ! 8 MODE.KEY ! 110 MODE.KEY 20 MODE.KEY 40 MODE.KEY
\ Adds 4 to opcode
\ Adds 14 \ Adds 14 \ Adds 0 \ Adds 10 \ Adds 8 \ Adds 8 \ Adds 2C Adds C Adds IC Adds 18 Indexed by mode value
(zero pagejX) LDX, STX, on 1y <ZP,X) (ZP),Y Immed i ate Accumu1ator Indirect JMPs only Absolute address Absolu te,X Absolute,Y
2C08
ICOC , 18 C,
Volume XII, Number 4
23
Forth Dimensions
inserted between definitions of primitive words is the definition of a colon word. For these reasons, I use assemble instead of CODE at the beginning of the definition of a primitive, and no end-CODE. A single END at the conclusion of the need for labels takes care of everything.
The maximum label length can be specified (I use five characters), and all extra characters are ignored. In the application which stimulated the design of this assembler, I allocated $8900-8DFF for the use-table and 8E0(>-90FF for the definetable. At five characters per label and two bytes for each address, this allowed for 219 label uses and for the definition of 73 labels.
Since JMP and JSR need two-byte addresses, if the stack is empty when one of these commands is encountered (i.e., when preceded by a label instead of an explicit address), a 0000 target address is automatically compiled. Since the conditional branch instructions are always assumed to be preceded by a target label, a dummy j ump length of $FF is compiled. When END tries to store a defined address at a requested location, it first reads a dummy byte, which will be either 00 or FF. If 00, the address is stored, overwriting the 0000 dummy; if FF is found, the jump distance is computed and the dummy FF is overwritten by a single byte. If the computed distance is more than 127 bytes an error message is given, stating that "Branch from <name> at address [nnnn] to address [mmmm] is too far." This detailed information helps to locate the program error.
A Forth word to function like the BASIC word CALL (to JSR a machine code routine at the address specified on the parameter stack) can be tricky. It requires an internal JSR request, with the JSR address to be changed before call is used.
The following technique will work:
ASSEMBLE CALL 0 ,X LDA, ULAB CALLl FFOO STA, 1 ,X LDA, ULAB CALL2 FFOO STA, JSR, -2 ALLOT DLAB CALLl 1 ALLOT DLAB CALL2 1 ALLOT INX, INX, ' NEXT 2 + JMP,
Assembling this sets up the label tables and compiles:
LDA 0,X STA FFOO LDA 1,X
ASSEMBLER SCR tt 4
0 \ A is a given address 24APR89CHP
1 \ C is address returned by opcode mnemonic
2 : 7LEGAL < C C) DUP 1+ 03 MODE.KEY 3 AND FF AND
3 ABORT" Illegal Opcode" DUP C3 20 = \ Check -for ,A
4 0= IF OVER 100 U< 0= IF MODE.KEY 3 OC AND
5 ABORT" Illegal Indirect" THEN THEN ; 6
7 : ABS.ADDR DUP 1+ 3 MODE.KEY 3 DUP 30 AND
8 ABORT" Illegal address" DUP 40 = IF DROP DROP ELSE AND 200 =
9 IF -1 MODE +! THEN 8 MODE +! THEN 1 LONG.ADDR ! ;
10 : ?ZP < 0 0) MODE.KEY 3 20 = 0= IF OVER 100 U< 0=
11 OVER 1+ 03 MODE.KEY 3 OVER OR 262 = SWAP 3F = OR OR
12 IF ABS.ADDR THEN THEN ;
13 : ?IMM DUP 1+ 3 MODE.KEY 3 AND 100 = IF -2 MODE +! THEN ;
14 .< «4> —>
15 \ Special treatment o-f imnediate with OPX, OPY, STX, or STY,
ASSEMBLER SOR « 5
0 \ END reports DLAB and ULAB locations,
1 \ compiles label data, reports errors 2
3 4 5 6 7 8 9
24APR89CHP
COMPILE.ADDRESS < A)
LONG.ADDR 3 IF SP3 SO = IF 0 THEN , ELSE 0, THEN ;
END PLACE.TAB BEGIN DUP 3 WHILE DUP LAB.TAB FIND.LAB OVER OVER U. U. OR OVER OVER OR 0= IF ." Label " DROP DROP 5 TYPE ." at " LAB.LEN + 3 U. ." not found" CLEAR.TABLES
10 DUP
11 SP! QUIT THEN 1+ DUP 03 IF OVER OVER - 1- DUP ABS 7F > IF DROP
12 ." Branch -from " SWAP >R >R 5 TYPE at " R> U. to " R>
13 U. ." is too -far" CLEAR.TABLES SP! QUIT THEN SWAP 0! DROP
14 ELSE ! THEN LAB.LEN + 2+ REPEAT DROP CLEAR.TABLES :
15
(#5)
— >
DOES> 0 LONG.ADDR
ASSEMBLER SCR tt 6
0 \ CREATE operators for defining mnemonics
1 \ Mu1timode opcodes
2 : M/CPU CREATE 2 ALLOT C, ?ZP ?IMM
C3 MODE C3 ADD.TABLE MODE.KEY 3 20 = 0= IF CCMPILE.ADDRESS THEN ZP ; Single-mode opcodes CPU CREATE 2 ALLOT C, DOES>
24APR89CHP
?LEGAL
3 4 5 6 7 8 9 10 1 1 12 13 14 15
C3
C, \ Adjust opcode
\
C3 C, ZP ;
BRANCHES CREATE 2 ALLOT C, DOES> C3 C, FF
C, ZP
< #6)
— >
ASSEMBLER SCR 7
0 \ Definitions of mnemonic
1 0060 61 M/CPU ADC, 0060 21
2 0060 41 M/CPU EOR, 0060 01
3 0060 81 M/CPU STA, 0060 Al
4 025E 02 M/CPU ASL, 025E 42
5 025E 22 M/CPU ROL, 025E 62
6 0 27E C2 M/CPU DEC, 0 27E E2
7 016F EO M/CPU CPX, 016F CO
8 0 36D A2 M/CPU LDX, 016E AO
9 007E 80 M/CPU STY, 007F 20
10 00 CPU BRK, 18 CPU CLC,
11 CA CPU DEX, 88 CPU DEY,
12 48 CPU PHA,
13 60 CPU RTS,
14 AS CPU TAY,
15 .(♦»7) —>
0 8 CPU PHP, 38 CPU SEC, BA CPU TSX,
M/CPU AND M/CPU ORA M/CPU LDA M/CPU LSR M/CPU ROR M/CPU INC M/CPU CPY M/CPU LDY M/CPU BIT CPU CLD, CPU INX, CPU PLA, CPU SED, CPU TXA,
24APR89CHP 0060 CI M/CPU CMP, 0060 El M/CPU SBC,
, 0 0 3F 14 M/CPU JSR, , 0 27D 82 M/CPU STX, , 0 0 3F 40 M/CPU JMP, 58 CPU CLI, B8 CPU CLU, C8 CPU INY, EA CPU NOP, 28 CPU PLP, 40 CPU RTI, 78 CPU SEI, AA CPU TAX, 9A CPU TXS, 98 CPU TYA,
Forth Dimensions
24
Volume XII, Number 4
£rA FFOO
:SR 0000
.'MP NEXT
The dummy address FFOO guarantees -hat the absolute-address version of STA vi. ill be used, and the 00 is in the position ihat END inspects to decide on two-byte
siorage.
The FFOO addresses following STA Tiust be changed to the two addresses mmediately following the JSR—but .'SR, automatically compiles two 00 bytes, hence -2 allot is used to back up -.0 the address for CALLl, then 1 ALLOT for the address of CALL2, then 1 ALLOT before compiling whatever follows. An alternative technique is:
ASSEMBLE CALL 0 ,X LDA, ULAB :ALL1 FFOO STA, 1 ,X LDA, ULAB :ALL2 FFOO STA, 0 C, DLAB CALLl : C, DLAB CALL2 -2 ALLOT JSR, IN'X, INX, ' NEXT 2+ JMP,
If a primitive needs to make reference to 3 Forth variable, the label can be associated A ith the creation of the variable. For example:
VARIABLE SOME -2 ALLOT DLAB SOME : ALLOT DLAB SOMEl : ALLOT
This provides for separate reference to the high and low bytes of the value of SOME, so that they can be addressed separately for modification purposes.
I have written this assembler for publicdomain use with the Apple][family of computers. It occupies eight screens and w ill operate anywhere in memory.
Chester H. Page earned his doctorate in mathematical physics at Yale and spent some 36 years at the National Bureau of Standards. His first Forth was Washington Apple Pi's fig-FORTH, which he modified to use Apple DOS, then ProDOS, and later to meet the Forth-79 andForth83 Standards; more recently, he incorporated many features ofF83.
AS 0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15
SEMBLER SCR « 8
\ More mnemonics and special de+initions 24APR89CHP
90 BRANCHES BCC, BO BRANCHES BCS, FO BRANCHES BEQ,
30 BRANCHES BMI, DO BRANCHES BNE, 10 BRANCHES BPL,
50 BRANCHES BK>C, 70 BRANCHES BUS,
: 60NEXT ['] NEXT 2+ JMP, ; FORTH DEFINITIONS
: DROP.ASSEMBLER 1 BEGIN 1+ DUP k.'OC.LIST il NAME) ['] ASSEMBLER = UNTIL BEGIN DUP 1+ VOC.LIST 3 DUP WHILE O^.^ER VOC.LIST ' 1+ REPEAT SWAP i.'OC.LIST ' ;
\ NOTE: DROP.ASSEMBLER not included in minimal HOST assembler
\ because UOC.LIST not in MIN.FORTH
: ASSEMBLE ?EXEC CREATE ASSEMBLER PRIM [ASSEMBLER] ZP !CSP ;
IhMEDIATE
ASSEMBLER SCR « 9
10N0U89CHP
\ Demonstration samples HEX FORTH DEFINITIONS ASSEMBLER CLEAR.TABLES
ASSEMBLE (TEST) 0 « LDA, 80 # LDY, DLAB ONE 300 ,Y STA, DEY,
ULAB ONE BPL, RTS, ASSEMBLE TRY 5 STX, 1 « LDX, DLAB TWO INX, 7 tt CPX, ULAB TWO
BNE, 5 LDX, ' NEXT 2+ JMP, ASSEMBLE HOME FC58 JSR, ' NEXT 2+ JMP,
\ Follow with a mispe11ed-1abe1 error
10 ASSEMBLE THIS 0 n LDX, DLAB THREE 103 ,X LDA, ULAB FOUR BNE,
11 3 ,X STA, ULAB ONE JSR, ULAB FIVE JMP, DLAB FOUR 104 ,X
12 STA, DLAB FIVE INX, ULAB RHREE BNE, ' NEXT 2+ JMP, 13
14 \ Misspelled label: RHREE
15 END
ASSEMBLER SCR 10
0 \ Demonstration samples 10N0U89CHP
1 HEX FORTH DEFINITICNS ASSEMBLER CLEAR.TABLES
2 ASSEMBLE (TEST) 0 LDA, 80 « LDY, DLAB ONE 300 ,Y STA, DEY, ULAB ONE BPL, RTS,
ASSEMBLE TRY 5 STX, 1 « LDX, DLAB TWO INX, 7 tt CPX, ULAB TWO
BNE, 5 LDX, ' NEXT 2+ JMP, ASSEMBLE HOME FC58 JSR, ' NEXT 2+ JMP,
3 4 5
6 7
8 \ Follow with a too-long branch error 9
10 ASSEMBLE THAT DLAB THREE ULAB FOUR JMP, 2 ,X LDA, DLAB FOUR
11 0 LDA, 80 ALLOT ULAB THREE BEQ, 12
13 14
15 END
ASSEMBLER SCR 11
0 \ Demonstration samples - duplicate label 10NOV89CHP
1 HEX FORTH DEFINITIONS ASSEMBLER CLEAR.TABLES
2 ASSEMBLE (TEST) 0 « LDA, 80 # LDY, DLAB ONE 300 ,Y STA, DEY,
3 ULAB ONE BPL, RTS,
4 ASSEMBLE TRY 5 STX, 1 « LDX, DLAB TWO INX, 7 « CPX, ULAB TWO
5 BNE, 5 LDX, ' NEXT 2+ JMP,
6 ASSEMBLE HOME FC5S JSR, ' NEXT 2+ JMP,
3 \ Follow with a dup1 icate-1abe1 error
9
10 ASSEMBLE THIS 0 # LDX, DLAB THREE 103 ,X LDA, ULAB TWO BNE, 1) 3 ,X STA, ULAB ONE JSR, ULAB FIVE JMP, DLAB TWO 104 ,X 12 STA, DLAB FIVE INX, ULAB THREE BNE, ' NEXT 2+ JMP,
1 3
14 Ef JD 1 5
(Figure One on page 41.)
Volume XII, Number 4
25
Forth Dimensions
Part Three
FORST: A 68000
NATIVE-CODE FORTH
JOHN REDMOND - SYDNEY, AUSTRALIA
Jji this installment of my series on ForST for the Atari ST, I want to describe an implementation of a much-discussed approach to the use of local (automatic) variables [Ros87, Yli89, Bet89, Hay89]. The nice outcome of the ForST implementation is that it has little in the way of space and speed penalties.
I illustrate the approach with an implementation of a package for arithmetic using IEEE short reals and, for a little light relief after that, the Sieve and Towers of Hanoi. The short reals have the advantage of being the same size as the ForST 32-bit integers, so all stack operations—fetches and stores, as well as the numeric comparisons—are the same.
Code with more than two SWAPS or one ROT is faster with locals.
The compiled code created by ForST very much follows the practice of C by using the LINK and UNLK instructions of the 68000. LINK pushes the contents of a specified register (A4 in our case) onto the hardware stack, saves the value of the stack pointer (A7) in that register (A4), and then increases the value in A7 by an immediate value (usually negative). The result is allocation of an area for local variables on the return stack which can be accessed by offset addressing using register A4. This area is totally secure and the code is therefore fully reentrant. UNLK deallocates the area and restores the value in A4.
The special words associated with the local variables are:
(******* Floating-point arithmetic words *******)
Copyright © 1989, John Redmond,
23 Mirool St, West Ryde, NSW 2114, Australia.
Written permission is required for commercial use.
hex
: q/ [2 args num den }
0 num den 0 ud/mod 2swap 2drop (64-bit quotient) ;
: align { 1 arg exponent }
(double mantissa left on the stack) 2dup or
if (non-zero) begin
dup ffSOOOOO and 0= while
d2* -1 addto exponent repeat
swap 0< - dup 1000000 < not if
2/ 1 addto exponent then exponent then (mantissa,exponent) ;
: expon 17 Isr Off and 7f - { fno exponent) ;
: mant 7fffff and 800000 or (absolute mantissa) ;
: smant dup mant swap 0< if negate then (signed mantissa)
: pack { 2 args mantiss exp } mantiss (test if non-zero) if
mantiss abs 7fffff and exp 7f + Off and wflip 7 Isl or else 0
then (real number) ;
: fnegate dup 0= not if 80000000 xor then ; : fabs 7fffffff and ;
: f* {2 args fnl fn2 } fnl 0= fn2 0= or if 0 (zero product) else
Forth Dimensions
26
Volume XII, Number 4
Sets state to zero, compiles the code for LINK A4, # 0, saves the address of the zero field for later patching, and sets the total size of the local area to zero.
Sets state to -1, ready for compilation.
LOCAL and LOCALS (synonyms) Expect the number of local variables on the stack and the names of the local variables directly following in the input stream, so that the local headers can be set up in normal header space. As each local variable is added, the size variable is decremented by four.
ARC and ARCS
Perform the same functions as LOCALS and, in addition, compile code to move the arguments from the data stack into local space on the return stack, using the code:
LEA -(#ARGS*4)(A4),A0
followed by a series of:
MOVE.L (A6)+,(AO)+
instructions (one for each argument).
LOCBUFF
Expects a buffer size on the data stack and adds this value to the local buffer. 32 LOCBUFF MYPAD reserves mypad as a named 32-byte buffer in stack space.
The accompanying code examples illustrate the use of the local words. The most important requirements are that they be used between { and }, and that arg or ARCS be used before local, locals , or
LOCBUFF.
The following words direct the code to access the stack variables:
TO
Sets a compilation flag to compile a move from the data stack TO the local area (the default mode is from the area to the data stack). ADDTO sets the flag to compile code to add a value on the top of the data stack to the data area. ADDR sets the flag to compile code to push the address of a local variable to the data stack.
A philosophical disadvantage of these three words is that they muddy the postfix water, but Forth is not pure in this respect anyway (CREATE and COMPILE are examples of the built-in aberrations).
fnl mant fn2 mant um* (mantissa product) fnl expon fn2 expon + 9 + align pack fnl fn2 xor 0< (net sign) if fnegate then then (real number) ;
: f/ { 2 args num den } den 0=
if 7fffffff (infinity) num 0< if fnegate then exit
then
num 0=
if 0 exit then
(zero)
num mant den mcint q/ (meintissa-quotient) num expon den expon - 17 + align pack num den xor 0<
if fnegate then (real-quotient) ;
: +mants { 3 args #shifts bigger smaller } ♦shifts 17 > if
bigger smant (smaller fno just too small) else
smaller smant #shifts asr bigger smant + then (mantissa sum) ;
: f+ {2 args fnl fn2 3 locals diff exponent fsign } fnl 0= if fn2 exit then (don't waste time) fn2 0= if fnl exit then
fnl expon fn2 expon - to diff
fnl expon to exponent (larger exponent?)
diff if
diff 0> if
diff fnl fn2 else
fn2 expon to exponent
diff abs fn2 fnl then +mants else
fnl smant fn2 smant + (add if expons equal) then
dup 0= if exit then
dup to fsign abs (mantissa)
dup 800000 < if
begin
2* -1 addto exponent
dup 800000 and until (left justified) else begin
dup ffOOOOOO and while (still overflowing on left)
2/ 1 addto exponent
Volume XII, Number 4
27
Forth Dimensions
/ and EXIT
These are enhanced to compile an UNLK A4 instruction before the usual RTS.; also carries out the patch of the link field to allocate the correct total space, and sheds the headers for the local variables.
A consequence of the use of local variables is an almost automatic change in programming style. The definition of F+ (which illustrates my current explorations into extended Forth style) is a good example, in that it rivals some of the very large definitions in the C or Pascal literature. Such code would not be possible in standard Forth (and is arguably not a good idea in any language!). Particular attention is drawn to the use of pointers in FCONVERT, which allow it to alter stack variables of the higher word, FNUMBER. I find the syntax much less confusing than that of C and Pascal.
Despite the size of the definitions, they are reasonably easy to understand and maintain—and it suggests a use of extended Forth as a postfix algorithmic language, which is the ultimate test of code clarity.
The floating-point package works well, particularly if it is compiled in the MACRO mode. The 32-bit values consist of the following fields:
bits 0-22: unsigned mantissa (bit 23 assumed to be 1) bits 23-30: exponent biased by +127 bit 31: mantissa sign
The precision is, of course, limited by the 24-bit mantissa, but gives quite good seven-figure decimal accuracy. Extended calculations will lead to some loss of accuracy through repeated rounding. This can be avoided by using a special stack for extended temporary reals. The coding approach is sufficiently generic for it to be extended to doubles, but not many of us really need them. Short reals have enough range and precision for Avogadro's number and Planck's constant, and that's good enough for me!
I do not propose to get involved in an explanation of how the package works. That is outside the scope of these articles. I can say, though, that writing it gave me a very strong feeling for the inherent imprecision of reals—and for the considerable overhead of working with them. This is
repeat then (exponent)
exp>onent pack fsign 0<
if fnegate then (signed real sum) ;
: f- fnegate f+ ;
: i>f { 1 arg numb } numb 0= if 0 else
nurrib abs 0 37 align pack numb 0<
if fnegate then then ;
: f>i { 1 arg fno 1 local exponent } fno 0= if 0 else
fno expon to exponent
exponent 0<
if
0
else
8 addto exponent
fno mant 0 (make double)
begin
d2* -1 addto exponent
exponent 0< until swap drop
fno CK if negate then then then ;
1 i>f constant f1.0 Oa i>f constant flO.O fl.O flO.O f/ constant fO.l fl.O 2 i>f f/ constant fO.5
: fix f>i i>f ;
: int dup fabs fO.5 f+ fix
swap 0< if fnegate then ; : fmod 2dup f/ fix f* f- ;
(******* Floating-point output words *******) decimal
: normalize { 1 arg fno 1 local decexp } -1 to decexp fno expon 0< if fno fabs
begin dup fO.l <
while flO.O f* -1 addto decexp repeat else fno fabs
begin dup fl.O < not
while fO.l f* 1 addto decexp repeat then
decexp (normalized mantissa, dec exponent)
Forth Dimensions
28
Volume XII, Number 4
spill
dup mant swap expon 8 + Isl 40000000 um* swap
0< if 1+ then 2/ (decimal mantissa) ;
sigfigs { 1 arg mantissa 2 locals #digs quotient } mantissa 7 to #digs begin dup to quotient
10 /mod swap 0= #digs 1 > and while
-1 addto #digs repeat drop
quotient #digs (scaled mantissa, #digits) ; decpt 46 hold ;
figures dup 0> if 0 do # loop else drop then ; zeros dup 0> if 0 do 48 hold loop else drop then ;
scientific { 4 args fno value length exponent }
exponent abs
<#
#s exponent sign 69 hold drop
value
length 1 >
if
length 1- figures decpt then
fno sign #> (string,length) ;
vsmall { 4 args fno value length exponent }
value
<#
#s
exponent -1 <
if exponent abs 1- zeros then decpt 1 zeros fno sign #> (string,length) ;
small { 4 args fno value length exponent 1 local diff }
exponent length - to diff
value
diff 0=
if
<# 1 zeros #s fno sign #> exit then
diff 0> if
<# diff 1+ zeros #s fno sign #> else
diff -1 = if
<# #s fno sign #> else
<# diff abs 1- figures decpt #s fno sign #> then
then (string,length) ;
(f.) {1 arg fno 3 locals decexp numb numbase } base @ to numbase decimal (force to decimal output)
(Continued on page 32.)
nowhere more evident than in the code for the output word (F.). It is very complicated and, often, the result is only approximate.
The floating-point arithmetic is about ten times slower than equivalent integer code (which surprises no one), but it can be made up to three times faster by reworking in assembly code. The transcendental definitions have not been included because of space constraints, but they are easily developed using series expansions [Koo87] and Homer's rule.
Time and Space
To close, some comparisons between code with and without local variables. The DOPRIME word of the sieve benchmark takes 202 bytes (196 bytes in the normal form) and the execution time is the same. In other words, the time for fetches and stores from or to the local stack space ends up essentially the same as that for overs, dups, and DROPS. I am not recommending the use of locals as a panacea for all definitions, but any code which includes more than two SWAPS or a single ROT will work faster with them. I am sold on the approach and intend to use it in all future large projects.
References
[Ros87]
[Bet89] [Hay89] [Koo87] [Yli89]
P. Ross, "Local Variables," Forth Dimensions (IX/4). J. Betancourt, "Prefix Frame Operators," Forth Dimensions (XI/1). J.R. Hayes, "Local Variables, Another Technique," Forth Dimensions (XI/1). P. Koopman, Jr., "Transcendental Functions," Forth Dimensions (IX/4). J. Yli-Nokari, "Local Variables and Arguments," Forth Dimensions (XI/1).
John Redmond is an Associate Professor of Organic Chemistry at Sydney's Macquarie University. He is a ".. .sometimes-evenings-when-Ihave-timeprogrammer" whose chief disappointment of1988 consisted of attending a plant pathology conference in Acapulco while Forth's own Charles Moore was visiting Sydney. Mr. Redmond welcomes letters from FD readers: 23 Mirool Street, West Ryde, NSW 2114, Australia.
Volume XII, Number 4
29
Forth Dimensions
BEST OF
GENIE
GARY SMITH - UTTLE ROCK, ARKANSAS
1 y ews from the GEnie Forth RoundTable—Some glaring truths emerge even under the most casual observation. One such truth is there is a wealth of opportunity to learn C via formal education, but little such opportunity presents itself for one wishing to learn Forth.
As two guest conferences dedicated to "Teaching Forth" indicate (Mahlon Kelly, July 1988; John Wavrik, March 1990), the landscape is not totally barren. Several vendors and other guests, such as Gary Feierbach, have also noted their teaching efforts. But since this discussion is with regard to academic instruction, we will have to save those insights for another visit.
One of the more active educators involved in the teaching of Forth is Jack Brown, of the British Columbia Institute of Technology and sysop of the BCFB link in ForthNet. It is Jack's excellent F-PC tutorial that is carried in Category 15 on GEnie.
So you do not labor under the false impression that Jack is the only Forth educator, let's look in Category 2, Topic 2 as Jack, Mark Smiley, and Archie Wamock discuss Mark's upcoming Forth classes which will use F-PC for the course model.
I have also prefaced this discussion with a course announcement that may be of some interest, since it is centered on a single-chip engine, the 68HC11. It is too late to get involved in this course, as announced, but I am satisfied that letters to John Schoonover will gamer a courteous response regarding future course offerings.
Topic 2
Forth Taught at
Schools/Universities
News, methods, and collaboration ideas for
those teaching Forth at schools, colleges,
and universities.
To: All
From: Jack Brown
Subj: 68HC11-based course
Those within commuting distance of the British Columbia Institute of Technology may be interested in the following course offered by the Instrumentation and Control Option of the Electrical and Electronics Program at BCIT.
Course: Introduction to Single-Chip
Microcontrollers (68HC11
used in course) Dates: Thursdays, starting February 8,
6:45 p.m. to 9:45 p.m. (10
weeks)
Cost: $210 includes 68HC11 reference manual, pocket guide, data sheets, and lab handouts.
I was talking to the instructor, Mr. John Schoonover, today and here is some information about the course:
• Course is 60% lecture and 40% lab.
• All major I/O functions and devices of the 68HC11 will be discussed and exercised.
• Programming is in assembly language and begins with pulse generation and pulse with modulation, which I am told can be used to turn an output port bit into an analog output (D/A).
• Final project consists of turning the 68HC11 into an eight-channel analog scanner (using the HCll's A/D ports). Test data for the scanner is generated by using the 68HC11 as an eight-channel D/A output generator.
Please note that the above comments are my recollections from talking to John and are not meant to be a complete course de
scription. It looks like there might be at least three members of BC FIG attending this course: John Somerville, Jack Brown, and Dave Brown. John Schoonover has said that it should be possible for us to do all of the lab exercises in Forth (if we choose to do so), although assembly language is currently used in the course.
You can register for this course by calling BCIT's extension division (604-4341610). The course registration number (CRN) is 08950 and the title is "Introduction to Single-Chip Micro Controllers."
To: Jack Brown From: Mark Smiley Subj: Teaching F-PC
I am going to be teaching a seven-week course in Forth next Fall at Goucher College using F-PC. The students will all have completed a seven-week course in Fortran. Is there a book you would recommend for the class? I need to choose a book soon.
I have taught Forth twice before. Once, I used MVP-FORTH with Starting Forth (1st ed.), then I used F83 with Mastering Forth. I was thinking of using either Mastering Forth, or Starting Forth (2nd ed.), but I'm open to other ideas (like Kelly & Spies).
I understand you teach Forth using FPC. What book do you use? Did you require students to also purchase a copy of Ting's System Guide to F-PCl How did you work the cost of the program (did you get a site Ucense from Tom Zimmer, or buy enough copies for the machines at your school, or what)?
Thanks for the advice.
To: Mark Smiley From: Jack Brown Subj: Teaching F-PC
Forth Dimensions
30
Volume XII, Number 4
I am using a revised set of notes for FPC 3.5, which were upgraded from the luloriai on the BBS. Actually the revision process is not yet complete, as I am converting them as this course progresses. These notes are in the public domain and can be revised or modified further by anyone wishing to use them. I have not assigned a required text but suggest the students get a copy of Starting Forth 2nd ed. or Mastering Forth.
F-PC 3.5, according to the notice, is public domain and not shareware, except for those pieces where contributors have reiirictions. So I just gave each student a
copy.
In my course I am not going too deeply into the internals of F-PC. Instead, we will spend the last week studying the source for Zen 1.1, which is much simpler to understand! The version I will be using was sent 10 me by Wil Baden and can be downloaded from BCFB as WB1ZEN11.ZIP and WB2ZEN11.ZIP. It is a fairly complete system and includes many of Wil's extras.
P.S. I am enjoying the graphics package!
To: Mark Smiley
From: Jack Brown
Subj: Teaching F-PC
"I have recently acquired copies of LESSON0.ZIP - LESSON5.ZIP from ECFB. I assume this is the tutorial you mentioned. Have I got it all?"
There are ten lessons in all... I only uploaded the first five. I am currently upgrading lesson six to F-PC 3.5 and should have finished all ten by the middle of May. I could send you (mail) the first five or six on disk if you would like to take a look. My students are also working out solutions to all the problems. Some of the lessons have up to 30 problems that require solutions. Most of these are fairly simple and straightforward. From my experience, most of my students seem to learn Forth best by having lots of examples to try with problems that suggest modifications to be made or variations to be implemented. (That is, unless ihey are brilliant self-starters!)
"When you have finished the current revision, are you planning to put it on the BCFB/ECFB?"
I talked to Jerry Shifrin the other day
(Continued front page 22.)
CREATE WORKAREA 82 ALLOT (Kernel)
Create a work area to hold 80 characters and two extra bytes, EXPECT (a 1 —) (Kernel)
Get / characters from the input device. Input halts when the full number have been received, or when CR is pressed. A certain amount of editing is allowed. When done, a variable named span contains the number of bytes actually received.
GET INPUT (a 1 —) (Screen 2)
Use EXPECT to get up to / characters from the input device, and store them at the address a as a counted string. (In a counted string, also called a memory or packed string, the first byte holds its length, and the remaining bytes its data.) Then append a blank, which is not included in the count. The blank is necessary for number conversion to work properly.
-LEADING { a 1 — a' 1') (Screen 2)
Trim leading blanks, analogous to the kernel word -trailing that trims trailing blanks.
: LEX (Screen 2)
(alb-- taila taill heada headl)
Scan forward into a string until a separator byte b is found. That byte and the remainder of the string become the "tail" and the first part becomes the "head." If the first byte is a separator, then the head is null (i. e., zero length), and the same is true if the end of the string has been reached. (Some versions of lex reverse the order of the head and tail in the stack diagram.)
NUMBER? (a — d f) (Kernel)
This word, not available in all Forths, is used internally by F83 to convert a string to a number. It is rather specialized, as it was created to meet the needs of interp ret, and was not designed for everyday use. Still, we are free to employ it—^Forth does not distinguish between a kernel word and a user-created one.
number? takes a counted string at the address a, and begins to convert it to a number using the current base, which is contained in the variable BASE. The base may be any number, not limited to 2,8,10, and 16. The address a points to the count byte, but this is ignored and conversion starts on the next byte. Any non-numerical byte will stop conversion, with two exceptions: A leading minus sign makes the number negative. A dot sets an internal variable named DP l (Decimal PLaces), but otherwise has no effect. On exit, a double-precision (32-bit) number and a flag are left on the stack. The flag is true if conversion was terminated by a blank, and is false otherwise.
ADD'EM { --) (Screen 2)
Get a line, extract numbers, and display their sum. Continue until the user enters a blank line. Note the phrase BL LEX DROP 1 - which adjusts the stack to the requirements
of NUMBER?.
Figure One. Detailed documentation for Screen Two.
Volume XII, Number 4
31
Forth Dimensions
(Redmond code, continued from page 29.)
fno 0= if
0 <# # #>
else
fno normalize (rtiant, decexp) to decexp (mantissa) spill to numb
fno (sign) numb sigfigs (mantissa, #digits) decexp
decexp -3 < decexp 5 > or if
scientific else
decexp 0<
if vsmall else small then then
then (string,length) numbase base ! ; : f. (f.) type space ;
(Floating-point input words *******)
decimal : fconvert
{ 3 args Spointer &value Srange 2 locals pointer char } Spointer @ 1+ to pointer
begin
pointer c@ to char
char 47 > char 58 < and while
&value @ flO.O f* char 48 - i>f f+ Svalue !
&range @ 0< not
if 1 &range +! then
1 addto pointer repeat
pointer Spointer ! ;
: expconvert { 1 arg pointer 3 locals char numb sign } 1 addto pointer 0 to numb 0 to sign
pointer c@ dup 45 = (minus sign)
if drop 1 addto pointer -1 to sign
else
43 = (plus sign) if 1 addto pointer then then
begin
pointer c@ to char
char 47 > char 58 < and (digit) while
numb 10 * char 48 - + to numb 1 addto pointer repeat (absolute integer exponent)
numb sign if negate then (signed integ expon) ;
: fnumber { 1 arg charptr 3 locals sign mantissa dpi }
and we were tossing around the idea of posting the revised tutorial lessons for FPC 3.5 in the MetroNet Forth Conference to see what kind of response it would get from a wider distribution. Who would like to see this happen?
"I am unaware of anyone's restrictions, except on Bob Smith's SFLOAT.SEQ, and on your (& the Kent Bros.) VPSFLOAT.SEQ. But as I understand it, neither of these packages would not allow us to give copies to students. So I assume you gave the students the complete package, eh?"
I use the VP-Planner floating point exclusively. Bob's package is restricted to personal use and I assume that's what the students will be doing with it, although I will not be using it in the course. My students are using a computer lab with IBM Model 70s installed (386s with VGA and your graphics package works fine on these). They have a software protection system installed by the school, called Integrity, which prevents students from accessing the installed software. I had our computer systems department install F-PC 3.5 on all the machines in the lab under a password, so only Forth students can use Forth—as it would be possible for a clever (or not so bright) Forth programmer using F-PC to violate Integrity's security.
All of my Forth students have some type of PC with hard disk at home, on which I presume they will install F-PC.
"It seemed fairly useless, since there was almost no documentation, and you couldn't save the system or use assembler (except crudely, via C,). I take it that it's a usable system now? Is there any documentation these days?"
There is still no *.DOC file, but there are many extensions with good documentation in the *.SCR files. I have not used it extensively and am mainly interested in it because the 1.1 version is Forth-83 and the Kernel Source is mostly high level and has been kept quite simple. An ideal system if you want to study the structure of the Forth compiler/interpreter as part of your course.
"I used to use his old F83X, before I switched to F-PC. I hear he has a new version of F83X out now (3.0). Have you U^ied that?"
Forth Dimensions
32
Volume XII, Number 4
I have not used Wil's F83X. Is this 3.0 ersion recent? It is odd that Wil didn't mention it to me when I was talking to him a few weeks ago. Perhaps someone else upgraded it. To be quite honest, I have one H* [[of a time keeping up with all the Forths available, and must confess that there are many I have not tried!
One other comment on my Forth students and my choice of F-PC.
Earlier (last Fall), I posted a note that I A ould be teaching this Forth course and asked people which Forth I should use. From the replies, the consensus seemed to be thata small system like Zen, Guy Kelly's rORTH83, or Pygmy might be the best ay to go. I choose F-PC because I wanted a system that used text files and one that •vould make a "good impression" on computer science students that have used dozens of applications packages and may already know half a dozen languages!
F-PC and its environment were a good : hoice... My students had just completed a SmallTalk course on the PS/2 386 Model "Os, and it ran like a slug! (Maybe an exaggeration on my part, but they were impressed with the speed and interactivity of F-PC and the hypertext!) I think it would nave been embarrassing to try and get them .0 use a small Forth system with a block editor.
Dr. Richard Haskell of Oakland Uniersity in Rochester, New York, is also leaching an introductory course using F-PC 3.5. He is also working on a set of notes that A ill be available on disk. He said he is wringing his notes, hopefully for distribuuon, to the Rochester Forth Conference this June.
I will be also attending Rochester Conference this June. Why don't you join us?
To: Jack Brown
From: Mark Smiley
Subj: Teaching F-PC
"I am currendy upgrading Lesson 6 to F-PC 3.5 and should be finished with all ten by the middle of May..."
I'm willing to wait till all ten are done. But I'd love to get a copy of the full set then.
"From my experience most of my students seem to learn Forth best by having lots of examples to try with problems..."
(Redmond code, continued.)
0 to sign 0 to result -1 to dpi
charptr 1+ c@ 45 = dup if drop 1 addto charptr -1 to sign else 43 =
if 1 addto charptr then then
addr charptr addr result addr dpi fconvert charptr c@ 32 =
if mantissa exit then (just an integer input)
charptr c@ 46 = (decimal point) if
0 to dpi
addr charptr addr result addr dpi fconvert then
dpi 0< if 0 to dpi then (no scaling needed)
charptr c@ 95 and 69 = (E) if
charptr expconvert negate addto dpi then
result (ready for scaling)
dpi 0>
if
begin dpi 0>
while fO.l f* -1 addto dpi repeat else
begin dpi 0<
while flO.O f* 1 addto dpi repeat then (scaled result)
sign if fnegate then ;
(fetch fnumber from input stream)
: ffetch 32 word fnumber ; immediate
(Sieve benchmark:)
decimal
8190 constant size create flags size allot
: do-prime
{ 3 locals p q cnt }
flags size 1 fill
0 to cnt size 0 do
flags i + c@
if i dup + 3 + to p
p i + to q
begin q size <
while
(Continued on next page.)
olume XII, Number 4
33
Forth Dimensions
0 flags q + c! p addto q repeat 1 addto cnt then loop
cnt . ." Primes " ; : primes 0 do do-prime loop ; (exartple: 25 primes) (Towers of Hanoi:) : movedisc
{ 2 args fronpeg topeg }
f roitpeg . ." to " topeg . 2 spaces ;
: movetower
{ 4 args height frorrpeg topeg usingpeg } height if
height 1- frorrpeg usingpeg topeg recurse fronpeg topeg movedisc
height 1- usingpeg topeg frorrpeg recurse then ;
: hanoi { 1 arg height }
els height 13 2 movetower ;
(example: 6 hanoi)
(Redmond code, continued.)
That was part of my experience as well, though I also had my students do a major project at the end of the course.
".. .the idea of posting the revised tutorial lessons in the MetroNet Forth Conference... Who would like to see this happen?"
Me, though you should also put a message about it in the F-PC conference when you do, since some of us don't subscribe to the Forth conference.
"I have not used Wil's F83X... Perhaps someone else upgraded it."
Could be. I noticed a fairly recent upload on ECFB, but I haven't downloaded it yet.
"I have one H*[[of a time keeping up with all the Forths..."
Me too!
. .it would have been embarrassing to
try and get them to use a small Forth system..."
I agree totally.
"Why don't you join us?"
I would like to, but I doubt I can this year. I am currently just a poor graduate student. I used to teach full-time at AUM (where I last taught Forth), then I went back to school to get my Ph.D. in math, which I hope to acquire this June. Next year, though, I may well be able to get Goucher to send me to the conference. I have been to FIG and FORML meetings, but never to Rochester,
"Dr. Richard Haskell is also working on set of notes..."
I would be very interested in copies of both his and your notes, when complete. By the way, have you ever used the graphics routines in your course? If so, I'd be interested in the problems you designed for it. I've been toying with the idea that, since
Forth is ideal for process control, I might use the turtle graphics as a sort of robot that could be programmed for simple tasks. It would also give them something interesting to look at.
To: Mark Smiley From: Steve Palincsar Subj: Teaching F-PC
Well, considering the fact that all your students will have completed a course in Fortran, I should think you'd give very serious consideration to Kelly & Spies, since the others you mention begin at a very much lower level—and also contain much less information.
To: Mark Smiley
From: Jack Brown
Subj: Teaching F-PC
"Have you ever used the graphics routines in your course?"
I used it in lesson four to plot random dots for the visual testing of various random-number generators. I gave the students the whole package, and they were also running your demos.
To: Mark Smiley From: Archie Warnock Subj: Teaching F-PC
I found that my students were very receptive to the idea of learning to write a program which would crash the machine. (Seriously!) It gave them an appreciation for the power of the language and also helped overcome the initial intimidation at the prospect of a new and completely different type of language. They had a great time.
And for image processing—a good excuse for looking at pretty pictures!
To: Archie Warnock
From: Mark Smiley
Subj: Teaching F-PC
".. .mine were very receptive to the idea of learning to write a program which would crash the machine."
Which of the many ways did you suggest? Or did you let them try to figure it out themselves? How much Forth had you taught them at that point? Did they know how to do loops in Forth?
(Continued on page 39.)
Forth Dimensions
34
Volume XII, Number 4
Testing Toolkit
last issue featured Phil Koopman .'r.'s interesting "Testing Toolkit." ApparenUy, one of our file filters ran amuck and n troduced mistakes in the code. Our apolo;ies to the author and to any readers who
Corrections to code printed in FD XII/3
were baffled by our error.
Rather than describe the permutations of single, double, and triple hyphens that were affected, we decided to reprint the correct code here in its entirety. Also, the
last two lines of the code example in the text of Koopman's article should have been:
)RS
1111 1111)DS
\ Forth testing support
\ By Philip Koopman Jr., for Harris Semiconductor
\ Derived from test code used for the RTX chip family
\ Developed on F-TZ (an F-PC and F-83 derivative) version 3.X11
VARIABLE #STACK -1 #STACK ! \ Saves number of stack elements for testing CREATE R-SAVE 8 ALLOT \ Note: F-TZ uses 32-bit return addresses!
: GET-DEPTH (..stack.stuff.. - ..stack.stuff..) DEPTH #STACK @ - #STACK ! ;
: DS((- $BAD1 $BAD2)
\ Init RS to -1 so that '—' will know it is a DS input \ Uses hex OBADl and hex 0BAD2 as sentinel values for DS -1 #STACK ! $BAD1 $BAD2 ;
: RS((- $BAD3 $BAD4)
\ Uses hex 0BAD3 and hex 0BAD4 as sentinel values for RS DEPTH #STACK ! $BAD3 $BAD4 ;
: — (nl n2 n3 .. n.n - nl n2 n3 .. n.n sentinel)
#STACK @ 0< NOT IF (if RS() GET-DEPTH THEN ;
: ?DATA (nl n2 ~)
= NOT ABORT" DATA STACK ERROR" ;
: 7RETURN (nl n2 —)
= NOT ABORT" RETURN STACK ERROR" ;
: (-)
DEPTH #STACK ! ;
: PERCOLATE (rl n.n .. nl — n.n .. nl rl) #STACK @ ROLL -1 #STACK +! ;
:)RS (r.n .. r3 r2 r.l nl n2 n3 .. n.n -)
GET-DEPTH #STACK @
IF BEGIN PERCOLATE 7RETURN #STACK @ 0= UNTIL THEN $BAD4 7RETURN $BAD3 7RETURN -1 #STACK ! ;
:)DS (r.n .. r3 r2 r.l nl n2 n3 .. n.n -)
GET-DEPTH #STACK @
IF BEGIN PERCOLATE ?DATA #STACK @ 0= UNTIL THEN
$BAD2 ?DATA $BAD1 ?DATA -1 #STACK ! ;
: REVERSE (n.In.2..n.n n — n.n..n.2n.l)
DUP 0> IF 0 DO I ROLL LOOP ELSE DROP THEN ;
(Continued on page 39.)
v olume XII, Number 4
35
Forth Dimensions
REFERENCE SECTION
Forth Interest Group
The Forth Interest Group serves both expert and novice members with its network of chapters, Forth Dimensions, and conferences that regularly attract participants from around the world. For membership information, or to reserve advertising space, contact the administrative offices:
Forth Interest Group
P.O. Box 8231
San Jose, CaUfomia 95155
408-277-0668
Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith
Founding Directors William Ragsdale Kim Harris Dave Boulton Dave Kilbridge John James
In Recognition
Recognition is offered annually to a person who has made an outstanding contribution in support of Forth and the Forth Interest Group. The individual is nominated and selected by previous recipients of the "FIGGY." Each receives an engraved award, and is named on a plaque in the administrative offices.
1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd
ANS Forth
The following members of the ANS X3J14 Forth Standard Committee areavailable to personally carry your proposals and concerns to the committee. Please feel free to call or write to them directly:
Gary Betts Unisyn
301 Main, penthouse #2 Longmont, CO 80501 303-924-9193
Mike Nemeth CSC
10025 Locust St. Glenndale, MD 20769 301-286-8313
Andrew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-5310
Elizabeth D. Rather FORTH, Inc.
111 N. Sepulveda Blvd., suite 300 Manhattan Beach, CA 90266 213-372-8493
Charles Keane Performance Packages, Inc. 515 Fourth Avenue Watervleit, NY 12189-3703 518-274-4774
George Shaw Shaw Laboratories
P.O. Box 3471 Hayward, CA 94540-3471 415-276-5953
David C. Petty Digitel
125 Cambridge Park Dr. Cambridge, MA 02140-2311
Forth Instruction
Los Angeles—Introductory and intermediate three-day intensive courses in Forth programming are offered monthly by Laboratory Microsystems. These handson courses are designed for engineers and programmers who need to become proficient in Forth in the least amount of time. Telephone 213-306-7412.
On-Line Resources
To communicate with these systems, set your modem and communication software to 300/1200/2400 baud with eight bits, no parity, and one stop bit, unless noted otherwise. GEnie requires local echo.
GEnie
For information, call 800-638-9636
• Forth RoundTable (ForthNet link*)
Call GEnie local node, then type M710 or FORTH
SysOps: Dennis Ruffer (D.RUFFER), Scott Squires (S.W.SQUIRES), Leonard Morgenstern (NMORGENSTERN), Gary Smith (GARY-S)
• MACH2 RoundTable Type M450 or MACH2 Palo Alto Shipping Company SysOp: Waymen Askey (D.MILEY)
BIX (ByteNet)
For information, call 800-227-2983
• Forth Conference
Access BIX via TymeNet, then type j
Forth Dimensions
36
Volume XII, Number 4
	forth
	Fairwimess: Jack Woehr (jax)
	Supports Fifth

	Type FORTH at the : prompt
	• Wetware Forth conference
	409-696-7055

	SysOp: Phil Wasson (PWASSON)
	415-753-5265
	• Druma Forth Board

	LMI Conference
	Fairwimess: Gary Smith (gars)
	512-323-2402

	Type LMI at the : prompt
	
	StarLink node 1306 on TymNet

	Laboratory MicroSystems products
	PC Board BBS's devoted to Forth
	SysOps: S. Suresh, James Martin, Anne

	Host: Ray Duncan (RDUNCAN)
	(ForthNet links*)
	Moore

	
	• East Coast Forth Board
	• Harris Semiconductor Board

	~ompuServe
	703-442-8695
	407-729-4949

	"or information, call 800-848-8990
	StarLink node 2262 on TymNet
	StarLink node 9902 on TymNet (toll

	Creative Solutions Conference
	PC-Pursuit node dcwas on TeleNet
	from Post. St. Lucie)

	Type !Go FORTH
	SysOp: Jerry Schifrin
	

	SysOps: Don Colbum, Zach Zachariah,
	• British Columbia Forth Board
	Non-Forth-specific BBS's with extensive

	Ward McFarland, Jon Bryan, Greg
	604-434-5886
	Forth Libraries

	Guerin, John Baxter, John Jeppson
	SysOp: Jack Brown
	• Twit's End (PC Board)

	Computer Language Magazine Confer
	• Real-Time Control Forth Board
	501-771-0114

	ence
	303-278-0364
	1200-9600 baud

	Type !Go CLM
	StarLink node 2584 on TymNet
	StarLink node 9858 on TymNet

	SysOps: Jim Kyle, Jeff Brenton, Chip
	PC-Pursuit node coden on TeleNet
	SysOp: Tommy Apple

	Rabinowitz, Regina Starr Ridley
	SysOp: Jack Woehr
	• College Comer (PC Board)

	
	
	206-643-0804

	nix BBS's with forth.conf (ForthNet
	Other Forth-specific BBS's
	300-2400 baud

	nks* and reachable via StarLink node
	• Laboratory Microsystems, Inc.
	SysOp: Jerry Houston

	533 on TymNet and PC-Pursuit node
	213-306-3530
	• Psymatic BBS

	jsfa on TeleNet.)
	StarLink node 9184 on TymNet
	Sunnyvale, California

	WELL Forth conference
	PC-Pursuit node calan on TeleNet
	408-992-0372

	Access WELL via CompuserveNet
	SysOp: Ray Duncan
	300 - 2400 baud

	or 415-332-6106
	• Knowledge-Based Systems
	This is a programmer's board with a

UPPER DECK FORTH $49
• Based on Forth-83 Standard
• Fully segmented architecture
• Uses ordinary ASCII text files
• Direct threaded code with top of stack in register for fast execution
• Compiles 32K file in 6 seconds on 4.77 MHz IBM PC
• Built-in multi-file full screen editor
• Assembler, decompiler, source-level debugger
• Turnkey application support, no royalties
• Complete documentation
• For IBM PC/XT/AT and compatibles with 256K, hard disk or floppy, DOS 2.0 or later
Add $3 for shipping and handling (outside USA $15). CA residents add sales tax.
Upper Deck^ Systems
N I,
P.O. Box 263342, Escondido, CA 92026 (619) 741-1075
Total control with LMI mH"
For Programming Professionals: an expanding family of compatible, highperformance, compilers for microcomputers
For Development:
Interactive Fbrth-83 Interpreter/Compilers for MS-DOS, OS/2, and the 80386
• 16-bit and 32-bit implementations
• Full screen editor and assembler
• Uses standard operating system files
• 500 page manual written in plain English
• Support for graphics.floating point, native code generation
For Applications: Fbrth-83 Metacompiler
• Unique table-driven multi-pass Forth compiler
• Compiles compact ROMable or disk-based applications
• Excellent error handling
• Produces headerless code, compiles from intermediate states, and performs conditional compilation
• Cross-compiles to 8080, Z-80, 8088, 68000, 6502, 8051, 8096, 1802, 6303, 6809, 68HC11,34010, V25, RTX-2000
• No license fee or royalty for compiled applications
MMUft^^ Laboratory Microsystems Incorporated MmMmM Post Office Box 10430, Marina del Rey, CA 90295 MMmmm Phone Credit Card Orders to: (213) 306-7412 MtKMrnm FAX: (213) 301-0761
Volume XII, Number 4
37
Forth Dimensions
SIGFORTH '91
REGISTRATION
ANNUAL SIGFORTH CONFERENCE MARCH 7-9, 1991
COMPLETE & MAIL THIS FORM TO:
SIGFORTH CONFERENCE THE SOFTWARE CONSTRUCTION CO. 2900B LONGMIRE DRIVE COLLEGE STATION, TX 77845 (409) 696-5432
PLEASE TYPE OR PRINT CLEARLY
NAME
I I I I
I I I I I
I I I I I I I
ORGANIZATION LJ 1 L_
ADDRESS I I I I I I I I I I I I I I I I CITY I I I I I I I I » I I I I I STATE ZIP I I I I I I PHONE l_L_l_J I I I I
FAY I I I I I I I L
CONFERENCE FEE:
PAYMENT BY CHECK ONLY PAYABLE TO: SIGFORTH
$ 190 ACM or SIGFORTH MEMBER
$190 GOVERNMENT (AGENCY)
$240 NONMEMBER
$50 STUDENT
$50 LATE FEE (AFTER 12/31/90)
91
HOTEL REGISTRATION:
HYATT REGENCY OF SAN ANTONIO 123 LOSOYA STREET SAN ANTONIO, TX 78205 PHONE: (512) 222-1234 FAX: (512)227-4925
large Forth area.
International Forth BBS's
• Melbourne FIG Chapter (03) 809-1787 in Australia 61-3-809-1787 international SysOp: Lance ColUns
• Forth BBS JEDI Paris, France
33 36 43 15 15
7 data bits, 1 stop, even parity
• Max BBS (ForthNet link*) United Kingdom
0905 754157 SysOp: Jon Brooks
• Sky Port (ForthNet link*) United Kingdom 44-1-294-1006 SysOp: Andy Brim son
• SweFIG
Per Aim Sweden 46-8-71-35751
• NEXUS Servicios de Informacion, S.L
Travesera de Dalt, 104-106, Entlo.
4-5
08024 Barcelona, Spain + 34 3 2103355 (voice) + 34 3 2147262 (modem) SysOps: Jesus Consuegra, Juanma Barranquero
barran@nexus.nsi.es (preferred) barranCg) nsi.es barran (on BIX)
This list was accurate as of October 1990. If you know another on-line Forth resource, please let me know so it can be included in this list. I can be reached in the following ways:
Gary Smith
P. O. Drawer 7680
Little Rock, Arkansas 72217
Telephone: 501-227-7817
GEnie (co-SysOp, Forth RT and Unix
RT): GARY-S
Usenet domain.: uunet'.wugate! wuarchive! texbell! ark !lrark! gars
*ForthNet is a virtual Forth network that links designated message bases in an attempt to provide greater information distribution to the Forth users served. It is provided courtesy of the SysOps of its various links.
Forth Dimensions
38
Volume XII, Number 4
Continued from page 34.)
I'd be particularly interested in any problems you devised for your course.
".. .a good excuse for looking at pretty
rictures!"
I enjoy image processing, too, but what son of programs could you assign to begin-.mg Forth students along those lines?
To: Mark Smiley
-'■om: Archie Warnock
Jubj: Teaching F-PC
"Which of the many ways did you suggest?"
I just let them try things. We'd already :one @ and ! when I first suggested this, -nd they'd go back to it periodically when] d point out a particularly dangerous cons j^ct. Mostly they tried putting zero into • 3ii ous memory locations. I had one pair of ; jys who really liked trying it with the issembler.
"I'd be particularly interested in any problems you devised for your course."
Mostly, I worked from Jack's notes. I •^ as teaching a non-credit course here at Goddard, and so didn't really make assignrrients, as such. I basically gave my own roles and then had them work on Jack's problems as a lab.
"I enjoy image processing, too, but what sort of programs could you assign to beginning Forth students along those lines?"
It's an enormously powerful example of vectored execution. Also, defining matrices and images is a good example of using defining words.
(Koopman code, continued.)
To suggest an interesting on-line guest, leave e-mail posted to GARY-S on GEnieigars on Wetware and the Well), or mail me a note. I encourage anyone with a message to share to contact me via the above or through the offices of the Forth Interest Group.
: INIT-TEST (..DS.stuff.. ..RS.stuff.. — ..DS.stuff..) (RS: — ..RS.stuff..) CR ." TEST-"
#STACK @ CK ABORT" You must specify both DS(and RS(." R> R-SAVE ! R> R-SAVE 2+ ! \ Save return address
#STACK @ REVERSE
BEGIN #STACK @ 0> WHILE >R -1 #STACK +! REPEAT
R-SAVE 2+ @ >R R-SAVE @ >R ; \ Restore return address
: FINISH-TEST (..DS.stuff.. — ..DS.stuff.. ..reversed.RS.stuff..) (RS: ..RS.stuff.. ~) R> R-SAVE ! R> R-SAVE 2+ ! \ Save return address
\ Transfer return stack contents onto data stack for later conpare 0 >R
BEGIN R> R> SWAP 1+ >R DUP $BAD3 = UNTIL R> REVERSE
R-SAVE 2+ @ >R R-SAVE @ >R \ Restore return address
-DONE" -1 #STACK ! ;
\ TEST and DONE use F-TZ specific words to coitpile a short \ definition containing the word to be tested, execute that \ definition, then FORGET it from the dictionary.
\ This borrows a cortpilation idea from Rick vanNorman's RTX test code
CREATE MARKER 4 ALLOT
: TESTER ;
: TEST: (-)
XHERE 2DUP MARKER 2! PARAGRAPH + DUP XDPSEG ! 0 XDP ! XSEG @ - [•] TESTER >BODy ! COMPILE INIT-TEST] ;
: ;DONE
COMPILE FINISH-TEST CCMPILE EXIT STATE OFF TESTER MARKER 2@ XDP ! XDPSEG ! ; IMMEDIATE
\ Test ROT for proper operation DS(1111 2222 3333 — RS(—
TEST: ROT ;DONE)RS
2222 3333 1111)DS
\ Test >R for proper operation DS(5555 — RS(—
TEST: >R ;DONE
5555)RS
)DS
\ Any combination may go between TEST: and ;DONE DS(1111 2222 3333 — RS(7777 2222 9999 ~ TEST: SWAP R> ROT >R ;DONE
7777 2222 3333)RS
1111 2222 9999)DS
\ Null test to be sure it works DS(— RS(~ TEST: ;DONE
)RS
)DS
Volume XII, Number 4
39
Forth Dimensions
(Continued from page 18.)
	Example A
	

	: SETC
	or : SETC

	1 2*c DROP ;
	0 -c ;

	Example B
	

	: CLRC
	or : CLRC

	0 2*c DROP ;
	0 +c ;

	Figure Nine. Two different high-level definitions for SETC and CLRC.

row. The words in Figure Three must synthesize the carry to (or the borrow from) the higher order place values with the D+ and/ or D- operators. (In T- the phrase DUP R> R> D+ adds -1 to [am ah] if al < bl, else it adds zero.)
You can use this symmetry to create arbitrary-precision addition (and subtraction) operators very easily (see Figure Four). To further illustrate the utility of our newly developed capability, some extended-precision, mixed-math operators are created in Figure Five.
Now let's produce some extended-precision shift operators using 2*c and c2/ (Figure Six). Examples of right-shift extended-precision operators are given in Figure Seven. Next, the examples in Figure Eight stretch this concept to produce fast multiple-shift, extended-precision operators.
Conclusion
With the inclusion of these proposed six words in your Forth, your ability to do extended-precision math will be greatly enhanced. A minimal amount of machinelevel coding is all that is necessary to give you some powerful Forth words. In fact, only +c, -c, 2*c, and c2/ need to be coded in E^sembly. SETC and CLRC can be defined in a couple of ways, shown in Figure Nine.
I thought these words to be so useful that I submitted proposals to include them to the January 1990 meeting of the ANSI Forth standard committee. However, they were rejected (although my U2 / did pass). If you think these words are useful and should be included in the standard in some form or fashion, write and submit proposals to ANSI X3J14, Forth Standards Committee,
111 N. Sepulveda Boulevard, Suite 300, Manhattan Beach, California 90266. Time is running short for submitting new proposals to the committee, so speak now while the process is still open.
Douglas Ross designs digital systems for NASA. He has created systems around the NC4000 Forth engine, and a Wideband Transport Frame Formatter using Harris' RTX 2000 with an interactive cmFORTH kernel. As a beta site for the RTX 2010, he will use that chip in both the Command and Data Handling subsystem of the MODIS-T instrument and in a project to build a flight computer core. He wants to develop an ANSI Forth for NASA to facilitate better sharing of Forth applications there.
(Continued from page 10.)
Racine, Wisconsin 53404-3336 Endnotes
1. Intel 80386 microprocessors may also have the division error interrupt return address bug. In a brief test, an 80386based IBM PS-2 Model 60 was shown to leave the wrong return address, and then to work properly when an 80286 bug fix was used. No technical reference was available, though, to document this as a characteristic of every 80386.
2. iAPX 86,88,186, and 188 User's Manual Programmer's Reference, page 375. The divisor is left unchanged, whether it's in a CPU register or in memory.
3. Intel, page 4-9.
4. Intel, pages 3-26, 3-39, 3-75. Only the 8086 is afflicted with the signed division bug. The 80186 properly handles the full range of valid signed results. The 80286 and 80386 computers I've tried seem to handle the full range of results.
5. Technical Reference Personal Computer AT, page 9-9.
6. That's unofficial, though. Intel says the quotient and remainder registers (which initially hold the dividend) are left undefined.
7. Jon Salmon, a student at Northeast Missouri State University, suggested using dummy safe operands to allow a division instruction to continue after return from an error interrupt He also suggested using a table of opcodes and corresponding instruction lengths to bump a possibly incorrect return address.
8. Four NOPs, which would match the length of the longest possible division instruction, execute in twelve clock cycles. A word-length Div instruction, for comparison, executes in 144-181 cycles on an 8086, and in 22-26 cycles on an 80286.
(Continued on next page.)
Forth Dimensions
40
Volume XII, Number 4
- Robert Berkey. "Positive-Divisor Floored Division," Forth Dimensions (XII/1) has many interesting comments about properties of floored and unfloored division, and many practical examples.
A c knowledgments
Zeorge Barlow, John Erhart, Bryce Jones, NMSU Computer Lab (Northeast Missouri Siate University), NMSU Library, Jon Salmon, T&R Electronics.
David Arnold has had some training m engineering school. He is trying to devise methods and equipment that will help him, a handicapped person, :o work both at home and in typical workplaces.
	Advertisers
	

	Index
	

	ACM
	,38

	Forth Interest Group
	44

	FORML
	. 19

	Harvard Softworks
	15

	Laboratory Microsystems
	37

	Miller Microcomputer
	

	Services
	41

	Next Generation
	21

	Silicon Composers
	2

	Upper Deck Systems
	37

MAKE YOUR SMALL COMPUTER
THINK BIG
(We've been doing it since 1977 for IBM PC, XT, AT, PS2, and TRS-80 models 1, 3. 4 & 4P.)
FOR THE OFFICE — Simplify and speed your worl< with our outstanding word processing, database handlers, and general ledger software. They are easy to use, powerful, with executive-look print-outs, reasonable site license costs and comfortable, reliable support. Ralph K. Andrist, author/ historian, says: "FORTHWRITE lets me concentrate on my manuscript, not the computer." Stewart Johnson, Boston Mailing Co., says: "We use DATAHANDLER-PLUS because if s the best we've seen."
MMSFORTH System Disk from $179 95
Modular pricing — Integrate with System Disk only what you need:
FORTHWRITE - Wordprocessor $99.95 OATAHANDLER - Database $59.95 DATAHANDLER-PLUS - Database $99.95 FORTHCOM - for Communications $49.95 GENERAL LEDGER - Accounting System $250.00
MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road. Natick, MA 01760 (508/653-6136, 9 am - 9 pm)

 [image: Picture #3]

 FOR PROGRAMMERS — Build prc%rams FASTER and SMALLER with our 'Intelligent" MMSFORTH SyStmartd applications modules, plus the famous MMSFOI^TH continuing support. Most modules include source code. Ferren Maclntyre, oceanographer, says: "Forth is the language that microcomputers were invented to run."
SOFTWARE MANUFACTURERS ~ Efficientsoftware tools save time and money MMSFORTH's flexibility, compactness and speed have resulted in better products in less time for a wide range of software developers including /^hton-Tate. Excalibur Technologies, LIndtiergh Systems, Lockheed Missile and Space Division, and NASA'-Goddard.
MMSFORTH V2.4 System Disk from $179.95
Needs only 24K RAM compared to 100K for BASIC, C, Pascal and others. Convert your computer into a Forth virtual machine with sophisticated Forth editor and related toots. This can result in 4 to 10 times greater productivity.
Modular pricing — integrate with System Disk only what you need:
EXPERT-2 - Expert System Development $69.95 FORTHCOM - Flexible data transfer $49.95 UTILITIES - Graphics. 8087 support and Other facilities.
and a //f#e morel
THIRTY-DAY FREE OFFER - Free MMSFORTH GAMES DISK worth $39.95. with purchase of MMSFORTH System. CRYPTOQUOTE HELPER, OTHELLO, BREAKFORTH and others
Caff for free bnocfiure, tec/infcaf Info or piichig iMtrits.
(Continued from page 25.)
AS'SEMBLER \ Invoke yocabularv
CLEAR.TABLES \ Prepare for DLAB and ULAB tables
ASSEMBLE TEST DLAB ONE 0 « LDA. 80 « LDY, DLAB TWO ;300 . Y STA, DEY, ULAB TWO BPL, RTS,
ASSEMBLE TRY ULAB ONE JSR, ULAB OUT LDA, PHA, ULAB OUTl LDA, ULAB PUT JMP,
ASSEMBLE THIS DLAB PUSH DEX, DEX, DLAB PUT 1 ,X STA, PLA, 0 ,X STA, ' NEXT 2+ JMP,
VARIABLE OUT
ALLOT DLAB OUT 1 ALLOT DLAB OUTl 1 ALLOT
ASSEMBLE ADVANCE CLC, ULAB OUT LDA, 1 ADC, ULAB OUT STA, ULAB OUTl LDA, 0 ADC, ULAB OUTl STA, NEXT 2+ JMP,
: NOTHING ;
: SOMETHING 1+ ;
: ASSEMBLE CALL 0 ,X LDA, ULAB CALLl FFOO STA, 1 ,X LDA,
ULAB CALL2 FFOO STA, JSR, -2 ALLOT DLAB CALLl 1 ALLOT DLAB
CALL 2 1 ALLOT I NX, I NX, ' NE.XT 2+ JMP,
END
Figure One. Illustrative application.
\ olume XII, Number 4
41
Forth Dimensions
FIG
CHAPTERS
The FIG Chapters Hsted below are currently registered as active with regular meetings. If your chapter listing is missing or incorrect, please contact Anna Brereton at the FIG office's Chapter Desk. This listing will be updated in each issue of Forth Dimensions. If you would Uke to begin a FIG Chapter in your area, write for a "Chapter Kit and Application." Forth Interest Group, P.O. Box 8231, San Jose, California 95155
U.S.A.
• ALABAMA Huntsville Chapter
Tom Konantz (205) 881-6483
• ALASKA
Kodiak Area Chapter
Ric Shepard Box 1344
Kodiak, Alaska 99615
• ARIZONA Phoenix Chapter
4thThurs., 7:30 p.m. Arizona State Univ. Memorial Union, 2nd floor Dennis L. Wilson (602)381-1146
• CALIFORNIA
Los Angeles Chapter 4th Sat., 10 a.m. Hawthorne Public Library 12700 S. Grevillea Ave. Phillip Wasson (213) 649-1428
North Bay Chapter 2nd Sat., 10 a.m. Forth, AI 12 Noon Tutorial, 1 p.m. Forth South Berkeley Public Library George Shaw (415) 276-5953
Orange County Chapter 4th Wed., 7 p.m. Fullerton Savings Huntington Beach Noshir Jesung (714) 842-3032
Sacramento Chapter 4th Wed., 7 p.m. 1708-59th St., Room A Bob Nash (916) 487-2044
San Diego Chapter Thursdays, 12 Noon Guy Kelly (619)454-1307
Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
John Hall (415) 532-1115
Stockton Chapter
Doug Dillon (209) 931-2448
• COLORADO Denver Chapter 1st Mon., 7 p.m.
Clifford King (303) 693-3413
• FLORIDA Orlando Chapter
Every other Wed., 8 p.m. Herman B. Gibson (305) 855^790
Tampa Bay Chapter
1st Wed., 7:30 p.m.
Terry McNay (813) 725-1245
• GEORGIA Atlanta Chapter
3rd Tues., 7 p.m. Emprise Corp., Marietta Don Schrader (404) 428-0811
• ILLINOIS
Cache Forth Chapter Oak Park
Clyde W. Phillips, Jr. (708)713-5365
Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039
• INDIANA
Fort Wayne Chapter 2nd Tues., 7 p.m. lyP Univ. Campus B7lNeffHall Blair MacDermid (219) 749-2042
• IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m. Iowa State Univ. 214 Comp. Sci. Rodrick Eldridge (515) 294-5659
Fairfield FIG Chapter
4ih Day, 8:15 p.m.
Gurdy Leete (515) 472-7077
• MARYLAND MDFIG
3rd Wed., 6:30 p.m. JHU/APL, Bldg. 1 Parsons Auditorium Mike Nemeth (301) 262-8140 (eves.)
• MASSACHUSETTS Boston Chapter
3rd Wed., 7 p.m. Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206
• MICHIGAN Detroit/Ann Arbor Area
Bill Walters (313) 731-9660 (313) 861-6465 (eves.)
• MINNESOTA MNFIG Chapter
MinneapoHs Fred Olson (612) 588-9532
• MISSOURI Kansas City Chapter 4th Tues., 7 p.m. Midwest Research Institute MAG Conference Center Linus Orth (913)236-9189
St. Louis Chapter 1st Tues., 7 p.m. Thomhill Branch Library Robert Washam 91 Weis Drive Ellisville, MO 63011
• NEW JERSEY New Jersey Chapter Rutgers Univ., Piscataway Nicholas Lordi (201)338-9363
• NEW MEXICO Albuquerque Chapter
IstThurs., 7:30 p.m. Physics & Astronomy Bldg. Univ. of New Mexico Jon Bryan (505) 298-3292
• NEW YORK
Long Island Chapter 3rdThurs., 7:30 p.m. Brookhaven National Laboratory
AGS dept., bldg. 911, lab rm. A-202
Irving Montanez (516)282-2540
Forth Dimensions
42
..
Volume XII, Number 4
Rochester Chapter Monroe Comm. College Bldg. 7, Rm. 102 Frank Lanzafame 716)482-3398
■ OHIO Cleveland Chapter -th Tues., 7 p.m. Chagrin Falls Library Gary Bergstrom 216) 247-2492
■ Columbus FIG Chapter
4Lh Tues.
Kal-Kan Foods, Inc. 5115 Fisher Road Terry Webb 614) 878-7241
Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
^612
Gary Ganger (513) 849-1483
. OREGON Willamette Valley Chapter 4th Tues., 7 p.m. Linn-Benton Comm. College Pann McCuaig (503) 752-5113
. PENNSYLVANIA Villanova Univ. Chapter 1st Mon., 7:30 p.m. Villanova University Dennis Clark (215) 860-0700
• TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. IntT. Corp., 8th Fl.
800 Oak Ridge Turnpike
Richard Secrist
(615)483-7242
• TEXAS Austin Chapter Matt Lawrence PO Box 180409 Austin, TX 78718
Dallas Chapter 4th Thurs., 7:30 p.m. Texas Instruments 13500 N. Central Expwy. Semiconductor Cafeteria Conference Room A Clif Penn (214)995-2361
Houston Chapter
3rd Mon., 7:30 p.m. Houston Area League of PC Users
1200 Post Oak Rd. (Galleria area) Russell Harris (713)461-1618
. VERMONT Vermont Chapter
Vergennes 3rd Mon., 7:30 p.m. Vergennes Union High School RM 210, Monkton Rd. Hal Clark (802) 453-4442
• VIRGINIA
First Forth of Hampton Roads
William Edmonds (804) 898^099
Potomac FIG
D. C. & Northem Virginia 1st Tues.
Lee Recreation Center 5722 Lee Hwy., Arlington Joseph Brown (703)471-4409
E. Coast Forth Board (703) 442-8695
Richmond Forth Group
2nd Wed., 7 p.m. 154 Business School Univ. of Richmond Donald A. Full (804) 739-3623
. WISCONSIN Lake Superior Chapter 2nd Fri., 7:30 p.m. 1219 N. 21st St., Superior Allen Anway (715) 394-4061
INTERNATIONAL
• AUSTRALIA Melbourne Chapter 1st Fri., 8 p.m. Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/889-2600
BBS: 61 3 809 1787
Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LG19
Univ. of New South Wales
Peter Tregeagle
lOBinda Rd.
Yowie Bay 2228
02/524-7490
Usenet
tedr@usage.csd.unsw.oz
. BELGIUM Belgium Chapter 4th Wed., 8 p.m. Luk Van Loock Lariksdreff 20 2120 Schoten 03/658-6343
Southern Belgium Chapter
Jean-Marc Bertinchamps Rue N. Monnom, 2 B-6290 Nalinnes 071/213858
. CANADA BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. lA-324
Jack W. Brown
(604) 596-9764
BBS (604) 434-5886
Northern Alberta Chapter 4th Sat., 10a.m.-noon N. Alta. Inst, of Tech. Tony Van Muyden (403) 486-6666 (days) (403) 962-2203 (eves.)
Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec, 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443
. ENGLAND Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS
. FINLAND FinFIG
Jaime Kotiranta Arkkitehdinkatu 38 c 39 33720 Tampere -h358-31-184246
. HOLLAND Holland Chapter
Vic Van de Zande Finmark 7 3831 JE Leusden
• ITALY FIG Italia
Marco Tausel
Via Gerolamo Fomi 48
20161 Milano
02/435249
• JAPAN Tokyo Chapter 3rd Sat. afternoon Hamacho-Kaikan, Chuoku Toshio Inoue (81)3-812-2111 ext. 7073
• REPUBLIC OF CHINA R.O.C. Chapter
Chin-Fu Liu
5F, #10, Alley 5, Lane 107 Fu-Hsin S. Rd. Sec. 1 TaiPei, Taiwan 10639
. SWEDEN SweFIG Per Aim 46/8-929631
. SWITZERLAND Swiss Chapter Max Hugelshofer Industrieberatung Ziberstrasse 6 8152 Opfikon 01 810 9289
• WEST GERMANY German FIG Chapter
Heinz Schnitter
Forth-GesellschaftC.V.
Postfach 1110
D-8044 Unterschleissheim
(49) (89) 317 3784
Munich Forth Box:
(49) (89) 725 9625 (telcom)
SPECIAL GROUPS
• NC4000 Users Group John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)
Volume XII, Number 4
43
Forth Dimensions
NEW FROM THE FORTH INTEREST GROUP
STACK COMPUTERS
Philip J. Koopman, Jr.

 [image: Picture #4]

 STACK COMPUTERS the new wave
by Philip J. Koopman, Jr.
This book presents an alternative to Complex Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC) by showing the strengths and weaknesses of stack machines.
$62.00
All About FORTH
An Annotated Glossary
Glen B. Haydon
Third Edition REVISED AND UPDATED
Includes COMMON USAGE STANDARDS DOCUMENTATION FOUR IMPLEMENTATIONS
ALL ABOUT FORTH
the 3rd Edition
by Glen B. Haydon
An Annotated glossary of most Forth words in common usage, including Forth-79, Forth-83, F83, F-PC, MVP-FORTH. Implementation examples in highlevel Forth and/or 8086/8088 assembler, and useful commentary, are given for each entry.
$90.00
NOW AVAILABLE!
SEE ORDER FORM INSIDE
Forth Interest Group
P.O.Box 8231
San Jose, CA 95155
Second Class Postage Paid at San Jose, CA
EPUB/images/cover.png
VOLUME X1 NUMBER & NOVEMBEIDECEMBER 1990 56,60

-
RELIABLE 8086 DIVISION

THREE NUMBER PROBLEM
FORTH ASSEMBLER & LABELS
[EASY EXTENDED-PRECISION MATH

63000 NATIVE-CODE FORTH (11)
-

EPUB/images/img_0002.png

EPUB/images/img_0001.png
n”

EPUB/images/img_0004.png

EPUB/images/img_0003.png

